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ABSTRACT

Compton imaging represents a promising technique for range verification in proton therapy treatments. In this work we report on
the advantageous aspects of the i-TED detector for proton-range monitoring. i-TED is an array of Compton cameras, that have
been specifically designed for neutron-capture nuclear physics experiments, which are characterized by γ-ray energies spanning
up to 5-6 MeV, rather low γ-ray emission yields and very intense neutron induced γ-ray backgrounds. Our developments to
cope with these three aspects are concomitant with those required in the field of hadron therapy, especially in terms of high
efficiency for real-time monitoring, low sensitivity to neutron backgrounds and reliable performance at the high γ-ray energies.
We find that signal-to-background ratios can be appreciably improved with i-TED thanks to its light-weight design and the low
neutron-capture cross sections of its LaCl3 crystals, when compared to other similar systems based on LYSO, CdZnTe or LaBr3.
Its high time-resolution (CRT∼500 ps) represents an additional advantage for background suppression when operated in pulsed
HT mode. Each i-TED Compton module features two detection planes of very large LaCl3 monolithic crystals, thereby achieving
a high efficiency in coincidence of 0.2% for a point-like 1 MeV γ-ray source at 5 cm distance. This leads to sufficient statistics
for reliable image reconstruction with an array of four i-TED detectors assuming clinical intensities of 108 protons per treatment
point. The use of a two-plane design instead of three-planes has been preferred owing to the higher attainable efficiency for
double time-coincidences than for threefold events. The loss of full-energy events for high energy γ-rays is compensated by
means of Machine-Learning based algorithms, which allow one to enhance the signal-to-total ratio up to a factor of 2.

Introduction
Proton therapy in comparison to conventional radiation therapy is able to target the tumor thanks to the maximum dose
deposition at the end of the protons trajectory (Bragg peak) and its finite penetration in matter. As the dose deposit beyond this
distal edge is very low, proton therapy minimizes the damage to neighbouring tissues compared to photon therapy and is hence
especially well-suited for tumors close to sensitive organs and in pediatric cases because the lower dose received by healthy
tissues reduces the long-term secondary effects1. However, inherent range uncertainties associated to anatomical changes,
patient setup errors and range errors from uncertainties in particle stopping power, and imaging reconstruction artifacts2 lead to
the application of conservative safety margins. Indeed, up to 1 cm of margin is considered nowadays for a prescribed range of
30 cm3, limiting significantly the potential benefits of protons over photons.

In this context, several experimental methods to verify the proton beam range are being developed in recent years, mainly
based on the monitoring of the secondary γ-rays, neutrons or positron emitters produced in nuclear reactions along the proton
trajectory. Prompt gamma (PG) monitoring allows a proper assessment of the distal dose falloff of the proton beam during the
treatment4. Unlike the produced positron emitters5 or neutrons6, the spatial distribution of the emitted prompt gamma rays
shows a very close correlation with the proton dose distribution at the end of the beam7. Moreover, these gamma rays are
prompt, i.e., they are emitted within 1 ns after the collision, which is key for the online verification of the proton range.

In the last decade, several research groups have designed and tested PG monitoring systems based in prompt gamma timing
(PGT)8, 9, γ-ray spectroscopy10, 11, or prompt gamma imaging (PGI) methods. The latter are based in either passive collimation,
such as knife-edge-slit cameras12–14, or in active collimation, where most efforts are focused in the development of Compton
Cameras15. Compton cameras are electronically collimated imagers, which represent a promising solution for the imaging of
gamma-rays of a few MeV. These systems, in contrast to passive collimated cameras, present higher efficiency and expanded
field-of-views which allow reconstructing two- (2D) or even three-dimensional (3D) images instead of one-dimensional (1D)
profiles4, 16. However, there are several challenges that need to be addressed for a reliable implementation of this methodology
in the clinical case17. Indeed, in-vivo range monitoring becomes still an issue for most of the Compton cameras under
development16, 18–29. These limitations are related to the low coincidence efficiency of some of the detectors20, 21, 25, the
high counting rates in clinical conditions16, 24, 30, the spatial resolution22, the signal-to-background ratio that is challenged by



contaminant reactions18, 31, and the CPU processing-time required by the corresponding image-reconstruction algorithm26.
There are remarkable similarities between most of these challenging effects of PGI in proton therapy, and those encountered

in other nuclear physics fields, such as neutron-capture cross-section measurements employing the time-of-flight (TOF)
technique32. These similarities are discussed in the following with some detail. In a TOF neutron capture experiment a pulsed
beam of neutrons is shot against a small sample, which typically has a small mass of grams or even milligrams. The reaction of
interest, radiative capture, leads to the formation of a compound nucleus, which de-excites emitting a prompt cascade of γ-rays.
Thus, common γ-ray energies typically span from a few keV up to 5-6 MeV, which is similar to the range of γ-ray energies
from proton induced inelastic reactions in the carbon, oxygen and nitrogen atoms of the human tissues. On the other hand, in
neutron-capture TOF experiments the elastic scattering channel dominates versus the radiative channel of interest. These stray
neutrons can be captured in the detector itself or in the surrounding materials, thereby enhancing the γ-ray background level and
further obscuring the observation of the channel of interest. For the latter reason, an effort is made to design detection systems
of high intrinsic γ-ray efficiency and as transparent as possible to neutrons32–34. This reduces the intrinsic background level and
enhances the signal-to-background ratio. Similarly, PGI is also challenged by the background induced by neutrons originated
from nuclear reactions of the primary proton beam4, 6, 35. In the case of carbon-ion beams neutron production is even more
pronounced and their discrimination against prompt γ-rays is an issue4. Therefore, optimization of the detection system in terms
of neutron sensitivity becomes also an aspect of interest for hadron therapy, although not much attention has been put into this
aspect in recent optimization studies31, 36. In order to overcome the experimental difficulties discussed above for TOF nuclear
experiments, we have developed a total-energy detector with gamma-ray imaging capability, called i-TED37, 38. i-TED features
an excellent time resolution for enabling the TOF technique38 and it has been especially designed to attain a high detection
efficiency, a low sensitivity to scattered-neutron backgrounds and a high image resolving power. While the work presented here
is entirely based on Monte-Carlo (MC) simulations, the i-TED detector has been already developed34, 37, 39–41 and employed for
TOF experiments at CERN n_TOF38. Therefore, intrinsic performance parameters such as energy resolution39, 3D intrinsic
position resolution34, 40 and efficiency41 have been experimentally validated and are realistically included in the simulation.
Based on our previous extensive experience in MC simulations of detectors37, 38 and neutron production and transport42, we
have been able to account for both geometrical and physical effects to a great level of detail.

Although most of the work carried out so far with i-TED in terms of neutron-capture experiments has been based on an
adaptation of the back-projection (BP) method43, for the present study we have implemented two additional imaging algorithms
which are the stochastic origin ensemble (SOE) method44, and the analytical algorithm (AA) of Tomitani et al.45. This has
allowed us to better illustrate the benefits of the aforediscussed aspects.

Finally, it is worth to bring in two additional aspects. On one hand, we have been able to implement a novel event
classification algorithm, that allows one to significantly improve the quality of the results by filtering-off high-energy γ-ray
events with incomplete energy deposition. To the best of our knowledge, this is the first time that such a machine-learning (ML)
technique is successfully applied to this aim, thereby enhancing the signal-to-background ratio by up to a factor of two. On the
other hand, we have been able to boost the time-performance of the image reconstruction algorithms by means of an advanced
graphical-processing unit (GPU) implementation, which led to very competitive reconstruction times for the most complex of
the implemented algorithms. As discussed below, the latter two aspects in conjunction with the high intrinsic efficiency of the
i-TED design, turn out of great interest when aiming at real-time dose monitoring.

Results
To demonstrate the feasibility and advantages of a detector like i-TED for PGI a series of MC calculations were carried out. In
the simulation, a pencil-beam of 120 MeV protons with a spatial spread of σ=3 mm and a total intensity of 2×1010 protons
impinges on water and PMMA phantoms with a size of 10×10×20 cm3. The energy of the protons, similar to that of previous
works4, 36, 46, 47, was chosen to match the proton range in water and PMMA (10.7 cm and 9.3 cm, respectively) with the center
of the phantom, where the detectors are located.

Figure 1 shows an schematic view of the simulated geometry. The phantom is surrounded by four i-TED detectors at 50 mm
distance from each lateral surface. Each module consists of two layers of LaCl3 crystals. The separation between both layers
can be adjusted for a trade-off between efficiency and resolution40. For the present work we use a constant distance of 15 mm.
The scatter (S) detector is made from a monolithic block with a size of 50×50×15 mm3. The absorber detector (A) consists of
an array of four LaCl3 crystals, each one with a size of 50×50×25 mm3. Detector housing, photosensors and other necessary
elements have been modeled according to the existing i-TED detector and more details can be found below and in Ref.41.

Apart from the geometry itself, an effort was made to implement the most suitable physics libraries for a realistic description
of the nuclear reactions both for charged particles and neutrons, and the delivered prompt γ-ray distributions from each isotope.
The simulations were carried out with the GEANT4 toolkit48 (v10.6) and the officially released QGSP_INCLXX_HP Physics
List (PL) was chosen. More details on the impact of the choice of PL are given below.
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Figure 1. Schematic diagram of the simulated geometry, as implemented in the GEANT4 code. See text for details.

All the secondary particles generated in the phantom, mainly γ-rays and neutrons, were registered. The largest production
yield is found for prompt γ-rays generated in nuclear reactions induced by the 120 MeV proton beam. According to our MC
simulations, 0.081 and 0.065 proton-induced prompt γ-rays (E>1 MeV) are produced, respectively, in water and PMMA. These
results are in agreement with the values given in previous works8, 31 but might overestimate the actual production47.

The PG spectra generated by the 120 MeV protons in water and PMMA phantoms, presented in Fig. 2, are dominated by
four γ-ray transitions at 2.3 MeV (14N), 4.4 MeV (12C), 5.25 MeV (15O) and 6.1 MeV (16O). More details on the reactions
originating these lines can be found elsewhere10. The depth distribution of the γ-rays emitted in the irradiation of a water
phantom is shown in the right panel Figure 2. Different emission patterns along the proton track can be identified for each
of the lines in the spectrum, associated to the different energy dependence of the underlying nuclear cross sections46. Some
of the PG lines (for instance 4.4 MeV and 6.1 MeV), show a sharp production maximum in the vicinity of the Bragg Peak,
which makes them specially suited for a direct assessment of the proton range. Considering the similarity in terms of PG yield,
energy spectra, and proton range in water and PMMA, only the simulations of the water phantom are considered for the results
presented hereafter.

To simulate the response of our detection system, all the secondary particles generated inside the phantom are tracked
through the geometry model of Fig. 1. For those γ-rays and neutrons interacting with the i-TED detectors, the deposited energy,
interaction position and time of all the hits in the S- and A-layers are registered for the subsequent image reconstruction and
background assessment. The particle type and energy of the incoming particle were also stored for the analysis described
in the following. Experimental effects such as the low energy threshold of 100 keV in each crystal, and the resolution on
gamma-ray hit position and deposited energy were included in the simulations to account for their impact on the imaging
resolution (see Ref.41). These experimental resolutions include a 4.5% FWHM energy spread at 500 keV39 and 1.5 mm FWHM
spatial uncertainty in all three space coordinates for the reconstruction of the γ-ray hit location in each scintillation block34, 40.

ML-aided prompt γ-ray imaging
The four main PG lines of Fig. 2, corresponding to de-excitation transitions in 14N, 12C and 15,16O, were selected for image
reconstruction. For each γ-ray line, S&A coincidence events were selected with an add-back energy window of 150 to 300 keV
around the peak energies. In order to reduce the delayed gamma and neutron background associated to the moderation and
partial capture of neutrons in the phantom, only events firing the S-layer within 10 ns after the proton pulse were selected.
This choice of time-of-flight (TOF) selection and its relation with the neutron sensitivity are discussed in more detail in the
following. The applicability of such TOF selection in clinical conditions would depend on the specific time structure of the
proton accelerator4.
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Figure 2. Energy spectrum of prompt γ-ray generated by 120 MeV protons along the beam track in water and PMMA (left)
and correlation between the γ-ray energy and the emission depth for a water phantom (right).

A crucial aspect for the application of PGI to proton range verification is the attainable spatial resolution in the distal edge
of the PG depth distribution (see Fig. 2). Aiming at achieving a good balance between imaging resolution and reconstruction
time, three different algorithms have been implemented and tested for the reconstruction of 2D PG images: BP, SOE and AA.
More details on the implementation of these algorithms are given in Methods. Fig. 3 shows the Compton images obtained with
the three algorithms after selecting in the add-back spectra the four main PG lines combined. These images have been obtained
by combining the statistics of the four i-TED detectors and using the full simulated statistics (2×1010 protons) to highlight the
attainable spatial resolution and the differences between imaging algorithms.

If one compares the three images in the upper row of Fig. 3, obtained using only gamma-ray events with full energy
deposition, the limited resolution and signal-to-background achieved with the simple BP algorithm is only slightly improved
with the SOE algorithm (1000 iterations). On the contrary, the analytical approach leads to a clear upgrade in terms of imaging
resolution (see Fig. 3). For a quantitative comparison of the resolution provided by the different algorithms, the projections of
the 2D image along the proton beam (Y) axis are presented for different PG energy selections in Fig. 4. For the case of the
12C peak, the three algorithms reproduce the position of the PG emission maximum within 5 mm. In both cases (12C and 4
main PG lines), the profiles extracted from BP and SOE algorithms start to the deviate from the actual fall-off profile below
the 80% of the maximum. On the contrary, the AA method is able to reproduce in a remarkable manner the sharp PG fall-off
distribution. Moreover, the AA yields also the best reproduction of the PG depth distribution at shallow depths. The precision
in the reconstructed PG emission profiles for the number of protons of clinical interest is discussed later in this work.

Besides the finite resolution of the detector and the performance of the imaging algorithm, the hard spectra of the PG lines of
interest represents an additional challenge for the satisfactory reconstruction of the PG depth distributions. In 2-plane Compton
cameras (CC) like i-TED, the large fraction of γ-ray events with an incomplete energy deposition leads to a deteriorated
image reconstruction, as displayed in the central row of Fig. 3. This limitation has led to the development of 3-plane and
multistage CC for applications dealing with high energy gamma-ray transitions20, 22, 25, 26. These systems enable a more reliable
determination of the γ-ray energy by means of threefold time-coincidences. Nevertheless, such an approach has a significant
cost in detection efficiency, which in turn compromises range assessment on a real-time basis. Aiming at keeping the advantage
of the high efficiency in i-TED while selecting only full-energy events, an innovative approach based on Machine Learning
(ML) identification of full-energy events has been developed in this work. This ML solution was coded in the TENSORFLOW
deep-learning API49 and it has allowed us to enhance the fraction of full energy events in a factor ranging from 1.5-to-2 in the
energy range of interest for PGI. As a consequence, to a large extent one can recover the resolution and signal-to-background
ratio of an ideal Camera with only full-energy events (see Fig. 3). The improved ML-aided image reconstruction is clearly
appreciated in the 1D profiles, shown in Fig. 5. This figure shows that, the reproduction of the position, width and fall-off of
the PG emission profile are improved thanks to this ML solution. More details on the methodology and performance of this
algorithm are given in Methods.

Fig. 6 shows some examples of the final results achieved for the imaging of single PG lines using the combination of the AA
reconstruction algorithm and the ML-aided selection of full-energy events. The reconstructed 2D images for the 2.3 MeV (14N)
and the 4.4 MeV (12C) lines are compared with the true distribution obtained from the MC simulation, showing a remarkable
reproduction of the PG emission distribution and the distal fall-off in both cases.
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Figure 3. From left to right, the imaging algorithms used correspond to BP, SOE and AA, respectively. The top-raw figures
show the Compton image obtained when only those events that make a full-energy deposition in S and A detectors are selected.
The middle-raw images have no selection, and they include also events due to neutron interactions. The bottom-raw images
have been obtained considering also all events, but in this case the ML-classifier was used to filter out events with incomplete
energy deposition.

Figure 4. 1D projection of the Compton image along the proton beam axis obtained using only the 4.4 MeV transition in 12C
(left) and including the four main transitions in 14N, 12C and 15,16O (right). The different solid lines correspond to the BP, SOE
and AA reconstruction methods. The true depth distribution (MC) is shown as the black dashed line.
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Figure 5. 1D projection of the Compton images along the proton beam axis obtained using only the 4.4 MeV transition in 12C
(left) and combining the four main transitions in 14N, 12C and 15,16O (right). The three solid curves correspond to the ideal
image with only full-energy γ-ray events, the image with no selection including neutron events and the corrected result after the
ML-classifier is applied. The true depth distribution (MC) is shown as the black dashed line.

Figure 6. 2D Compton images obtained with the analytical reconstruction method and the ML-aided event selection (right)
compared to the actual spatial distributions (left). The top and bottom images correspond to the 14N peak and 12C peaks,
respectively.
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Sensitivity to neutron-induced backgrounds
Neutrons are produced along with prompt gamma-rays in nuclear reactions during the proton therapy treatment. According to
our MC simulations, the prompt neutron yield generated by 120 MeV protons is water 0.064 per incident proton, just 20%
smaller than that of γ-rays in the energy region of interest (1-7 MeV). These neutrons are partially moderated before escaping
the water phantom and may be captured in the detector sensitive volume or surrounding structural materials, leading to an
important source of background.

The impact of the detector neutron sensitivity was studied by means of simulations of the same set-up and only 108 protons,
in which the LaCl3 crystals of i-TED were replaced by other inorganic scintillators or semiconductor detectors commonly
used in existing or foreseen CC designs. These active detection materials are LYSO16, 31, BGO16, 28, 30, CdZnTe19, 20, 26, 36 and
LaBr3

18, 23, 25 crystals. Ce:GAGG22, 24 has not been included in the study but its neutron sensitivity could be even higher due to
the presence of Gd, featuring one of the largest known thermal cross sections50.

Figure 7 shows the time distribution of neutron events in the detector for the different active materials compared to the
distribution of γ-ray events. LaCl3 shows the smallest efficiency for gamma-rays produced by prompt neutron interactions
reaching the detector within few ns after the proton bunch, simultaneously with the prompt gamma-rays arising from proton
interactions in the water phantom. On the other hand, BGO is the less sensitive material to slow neutrons reaching the detector
1-100µs after the proton pulse.

The Figure-of-Merit to be studied is the fraction of neutron- and gamma-induced coincidences, displayed in right panel of
Figure 7. LYSO, a very promising crystal in terms of efficiency and time resolution16, shows the highest sensitivity to neutrons,
which represent 42% of the total counting rate. On the other side, apart from its low energy resolution for Compton imaging,
BGO seems the best solution due to its low sensitivity to neutrons. If the clinical accelerator pulse structure allows to set TOF
selections of a few ns, as proposed in recent works28, 51, the contribution of neutron background would be clearly suppressed
for all the studied crystals. Our results indicate that after a TOF selection of e.g. 10 ns, LaCl3 and BGO would have the lowest
fraction (14%) of neutron coincidences or neutron sensitivity.

Figure 7. Left: Time distribution of the neutron-induced counts registered in a Compton camera (i-TED geometry) for
different detection materials. The time distribution of γ-ray counts in LaCl3 is shown as a reference in dashed line. Right:
Fraction of neutron- and gamma-induced S&A coincidences for each detector material in the full time window (solid) and after
selecting the first 10 ns(dashed).

Efficiency and in-vivo real-time PG imaging
Several aspects are of special relevance for in-vivo real-time PGI. The first key features are the detection efficiency and
signal-to-background ratio, which have to be high enough to reconstruct PG images with sufficient resolution in clinical
conditions. Average clinical beam intensities are of the order of 1-2 nA (i.e. 6-12×109 p/s)4 and the relevant clinical scenarios
for a single pencil beam in beam-scanning proton RT correspond to the delivery of 108 to 109 protons12, 16, 26.

Table 1 summarizes the detection efficiency for the proposed setup composed of four i-TED modules at 100 mm from the
proton beam axis displayed in Fig. 1. The efficiency for several energy ranges in the prompt gamma spectrum is compared.
The impact of the distance between the S- and A-planes, which can be remotely adjusted for an optimum trade-off between
efficiency and resolution has been studied. The latter approach refers to the electronic-dynamic collimation implemented in
i-TED, which is described in detail in Ref.41.

According to the results of Table 1, only 6% of the total coincident events are selected with an energy window around the
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Focal distance (mm)
Energy selection 5 15 30
All PG (1-7 MeV) 2.6×10−4 2.1×10−4 1.6×10−4

4 main PGs 4.3×10−5 3.5×10−5 2.6×10−5

12C (4.3-4.6 MeV) 1.5×10−5 1.2×10−5 8.8×10−6

Table 1. Detection efficiency for S&A in time coincidence per incident proton combining the four i-TED modules of Fig 1.
Each row corresponds to a different selection in deposited energy and each column shows the result for a different distance
between the S- and A-planes. The uncertainties due to counting statistics are below 0.5%.

4.4 MeV peak. If the four main PG lines are combined, as in Fig. 3, this fraction increases to 16% of the total coincidences.
Hence, in order to achieve sufficient statistics (∼ 104 events per image) for in-vivo range verification (i.e. 109 protons), the
combination of several PG lines becomes mandatory. Figure 8 compares the 1D profiles of the images obtained with the
AA algorithm and the ML-based full-energy selection corresponding to different number of protons and two different energy
windows. On one side, selecting the whole energy range from 1 to 7 MeV improves the statistics and thus less fluctuations
are obtained in the reconstructed profiles. On the other hand, limiting the energy selection to the four main peaks reduces the
background and enhances the fraction of full-energy events, hence improving the resolution in the determination of the proton
range. The achieved precision in the reproduction of the PG emission fall-off is quantitatively analyzed in Table 2. The values
in this table correspond to depth in water taking into account that the reference frame of the Compton images in this work is
centered at a depth of 100 mm. The position of the reconstructed maxima (Max) has been determined from the center of the bin
and the positions along the fall-off curve (F90%, F80% and F50%) have been linearly interpolated from the histograms in Fig. 8.
The final reconstructed positions in Table 2 have been calculated as the average of two independent sets of simulated data and
the uncertainties correspond to the standard deviation between the two independent results.

Figure 8. 1D projection of the Compton images along the proton beam axis obtained the Analytical reconstruction algorithm
using all the events between 1 and 7 MeV (left) and the 4 main PG lines (right). The solid curves show different proton
intensities. The true depth distribution (MC) is shown as the black dashed line.

According to the results of Table 2, the deviations between the reconstructed positions and the actual PG distribution are in
the range 0.5-5 mm for the profile selecting the energy window from 1 to 7 MeV. For the case of the 4 main peaks the agreement
is in most cases better than 3 mm. As the number of protons decreases, the uncertainties tend to be slightly enhanced. The best
precision is obtained for the reconstructed position of the 50% fall-off (F50%), which agrees with the real (MC) distribution
within less than 1 mm in most cases (see Table. 2). On the other hand, the position of the PG maxima are systematically
underestimated by at least 3 mm and have a lower accuracy related to the 2.5 mm bin size.

The computing-time performance of the relatively complex Compton imaging algorithms is also critical for the in-vivo
range verification via PGI. In this work, three different 2D image reconstruction algorithms have been tested. The reconstruction
times with the BP and SOE methods are perfectly compatible with real-time imaging (see Table 3). For the latter, good
quality images containing a minimum of 2×104 coincident events are reconstructed in few seconds using a single-thread CPU
calculation. As for the AA method, which yields the best imaging resolution (see Figs. 3 and 4), we used a GPU-accelerated
CUDA52 implementation of the code, which allows reconstructing an image in few tenths of seconds, 120 times faster than
with a conventional single-thread CPU based approach. A similar acceleration has been reported for 3D position reconstruction
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1< Es +Ea <7 MeV Max F90% F80% F50%
Real (MC) 99.70(5) 104.33(1) 105.13(1) 106.19(1)
3×109 p 93.8(12) 100.1() 103.4() 106.0()
109 p 93.8(12) 99.3() 100.9() 106.0()
3×108 p 96.3(12) 100.6() 102.6() 107.6()
108 p 96.3(12) 101.6() 103.5() 107.6()
4 main PG peaks Max. F90% F80% F50%
Real (MC) 99.70(5) 100.96(1) 101.77(1) 104.71(1)
3×109 p 96.3(12) 97.6() 100.5() 107.9()
109 p 96.3(12) 100.5() 102.3() 106.4()
3×108 p 96.3(12) 99.4() 101.0() 104.8()
108 p 96.3(12) 100.4() 101.8() 105.1()

Table 2. PG maximum (Max) and 90% (F90%), 80% (F80%) and 50% (F50%) fall-off positions corresponding to the profiles of
Fig. 4 compared to the real PG emission profile in the MC simulations. The values are given in mm.

algorithms in our previous work34.

Discussion
i-TED is a Compton camera array that has been specifically designed for neutron-capture nuclear physics experiments. Several
design aspects of i-TED, such as its high time resolution, high efficiency and relatively low neutron sensitivity may become of
interest in order to address some of the current challenges in Prompt Gamma Imaging for range verification in proton therapy
treatments. The results presented in this work show the prospects of i-TED concerning detection efficiency, sensitivity to
the neutron background and spatial resolution attainable with a combination of ML-based full-energy selection method and
state-of-the-art reconstruction algorithms.

This work has presented a MC study on the applicability of i-TED to range verification, where the attainable image
resolution is one of the critical issues. The BP and SOE algorithms yielded a good reproduction of the PG maximum emission
point in spite of their limited resolution. Much higher resolution images can be obtained with i-TED using the Analytical
Approach of Ref.45, which provided the best reproduction the distal fall-off of several selections of PG lines with an accuracy
ranging from 1 to 3 mm, at the level of previous works using Compton Cameras18, 20, 21, 29 and clearly better that those reported
in Refs.22, 26, 30. The deterioration of the images due to partial-energy events has been significantly improved by means of a ML
classifier, which improved the fraction of correct Compton events up to a factor 2.

The i-TED detector was developed for neutron-capture time-of-flight experiments, where a low sensitivity to neutrons is
a crucial aspect. Neutrons are also among the main contributors to the background in PGI systems. Indeed, previous works
have discussed the possible rejection of the neutron background in PGI systems through the application of time-of-flight
selections28, 35, 51. However, aiming at a maximum detection efficiency, the detector-to-phantom distance has to be minimized
and a satisfactory TOF separation of the prompt gammas and neutrons is not feasible (see Fig. 5). In this scenario, the use
of scintillators with reduced neutron sensitivity, such as LaCl3 or BGO, is the best solution to minimize the neutron-induced
background. Still, LaCl3 shows the advantage of the high energy resolution for Compton imaging.

The maximum attainable efficiency of the full i-TED setup (see Table 1) in the energy range of interest for PGI (1-7 MeV)
is at the level of the most efficient existing or designed Compton cameras for PGI36, which reports an efficiency of 4.1×10−4

per proton for deposited energies above 1 MeV. The absolute efficiency per emitted prompt γ-ray for the i-TED array, calculated
as the average of the four main PG transitions, is in the range 0.9-1.6×10−3 for the focal distances of Table 1. This value
outperforms most of the CC for PGI developed to date, with a range of efficiencies between 10−4 and 10−8 per emitted PG4.
The high efficiency for the proposed setup over the full energy range of interest (1-7 MeV) allows to determine the position
of the PG distribution fall-off with an accuracy better than 3 mm for proton intensities as low as 108, in the range of clinical
interest12, 16, 26.

Following the promising prospects for range verification in proton therapy with i-TED presented in this work, we aim at
testing this detection system in proton beam facilities, such as the 18 MeV cyclotron at CNA (Sevilla) and clinical beams (e.g.
CPO ORSAY). These tests will provide experimental validation for the methods and results presented in this work and will
allow us to study the possible limitations of i-TED with additional experimental challenges, such as the high counting rates.
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Methods
The i-TED Compton imager
This work has presented a MC study based on the i-TED array consisting of four high-efficiency Compton cameras37, 38. This
novel detection system is under development at Instituto de Física Corpuscular (IFIC) within the HYMNS-ERC project?. The
first demonstrator has been already assembled, fully characterized41 and applied to high-resolution neutron TOF experiments38.

Each of the i-TED Compton modules uses 5 position-sensitive detectors (PSDs) distributed in two parallel detection planes,
Scatter (S) and Absorber (A), as shown in Fig. 9. Each PSD contains a LaCl3(Ce) monolithic crystal with a square-cuboid
shape and a base surface of 50×50 mm2. The LaCl3 is hygroscopic and thus it is encapsulated in an aluminum housing. Each
crystal base is coupled to a 2 mm thick quartz window, which is optically joined to a silicon photomultiplier (SiPM) from
SensL (ArrayJ-60035-64P-PCB). The photosensor features 8×8 pixels over a surface of 50×50 mm2. A 15 mm thick crystal is
used for the PSD in the S-plane. Four 25 mm thick crystals are utilized for the PSDs placed in A-plane (see Fig. 9). In total,
320 SiPM channels are biased and readout by means of front-end and processing PETsys TOFPET2 ASIC electronics53. In
order to minimize gain shifts due to changes in the temperature of the experimental hall, every ASIC is thermally coupled to a
refrigeration system composed by a Peltier cell, a heat-sink and a small-size fan (see Ref.41 for further details).

Figure 9. Left: i-TED detector consisting of one scatter and four absorber detectors in movable and parallel detection planes.
Right: Schematic view the same i-TED detector as implemented in GEANT4 indicating the dimensions of the LaCl3(Ce)
crystals of the scatter and absorber planes.

The i-TED Compton modules embed the so-called dynamic electronic collimation technique41. This is accomplished
by means of a linear positioning stage, that allows one to remotely vary the distance between the A- and S-planes, thereby
optimizing performance for each specific application. Finally, the successful implementation of ASIC-based TOF-PET readout
electronics for Compton imaging has led to a rather compact and cost-effective system, when compared to other Compton
imagers54, 55.

MC simulations of the proton beam and i-TED
The applicability of i-TED for range verification has been studied by means of MC simulations using the GEANT4 toolkit. The
detailed geometry model of each of the i-TED detectors as implemented in GEANT4 is shown in Figure 9. More details can be
found in our previous work38.

The modelling of the physics processes occurring during the irradiation of a phantom with protons in GEANT4 can be
carried out with different models, so-called Physics Lists (PL)56. In this work we have tested several officially released PLs,
which combine the Quark-Gluon-String model (QGSP) for the inelastic scattering of protons above ∼10 GeV, not relevant
for the present study, with three different cascade models covering the energy below 10 GeV: the Liége Intranuclear Cascade
model INCL++, the Bertini (BERT) or the Binary Cascade model (BIC). The resulting prompt gamma yields for the different
PLs, presented in Fig. 10), indicate that INCL++ and BIC agree within 2% in the absolute PG yield while BERT leads to a 2.3
times higher production, in agreement with the clear overestimation reported in Ref.47. Moreover, the BERT model generates a
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continuum of γ-ray energies instead of the expected discrete spectra (see Fig. 10), as it has been reported in previous works46.
Last, the QGSP_BIC_ALLHP Physics List was tested. This PL includes the G4ParticleHP package, still under development,
which uses nuclear data libraries instead of the default models for the transport of light charged particles57. In particular, the
inelastic interaction of protons with 12C and 160 up to 150 MeV are simulated using the ENDF/B-VII.158 cross section. This
PL leads to a 32% smaller PG yield, a result which is in line with the reduction suggested by the benchmark of Pinto et al.47.
However, the latter was discarded since it failed to produce individual γ-ray lines in the proton-induced inelastic reaction (see
Fig. 10).

Figure 10. Left: Energy spectrum of proton-induced prompt γ-rays obtained in the GEANT4 simulations with different
Physics Lists. Right: Distribution of γ-rays and neutrons produced by 120 MeV protons as a function of the depth in water
simulated with QGSP_INCLXX_HP.

As for the neutron yields in the irradiated phantoms, all the studied PLs agree within 24%. For an accurate transport of
neutrons below 20 MeV, neutron-induced reactions within GEANT4 were simulated by means of the G4NeutronHP package59,
using the G4NDL-4.6 data library (based on the JEFF-3.360 evaluated data file). This high-accuracy neutron transport package,
not included in some of the previous works20, 36, has a significant impact in the slowing-down and partial capture of neutrons
within the phantoms, and in the response of the detectors to neutrons. Indeed, the number of slow neutron events in the detectors
would have been underestimated in up to a factor 5 if this package had not been included.

The final choice of PL was QGSP_INCLXX_HP since it includes an accurate modelling of neutron interactions and
leads to the smallest PG yield among the PLs, which correctly generate discrete γ-ray transitions. In addition, the INCL++
model has shown the best reproduction of the neutron and γ-ray yields in the simulation of proton induced reactions in other
applications42, 61. The right panel of Figure 10 shows the depth profile for the secondary emission of γ-rays and neutrons in
water resulting from our MC simulations of the 120 MeV proton beam. In the case of the γ-rays, the largest production is due
to proton-induced reactions, which show a clear maximum at the end of the proton range. For the PG images obtained in this
work, several energy cuts have been applied to select either the whole spectrum of Fig 2 between 1-7 MeV or the main single
transitions.

A particular emphasis has been placed on the physical origin and time distributions of the γ-rays and neutrons escaping
the phantom and reaching the i-TED detectors. This is of particular relevance for our study of the neutron sensitivity and the
applicability of time-of-flight cuts. The left panel of Fig. 11 shows the time of arrival of γ-rays and neutrons to i-TED after
being produced in a water phantom by 120 MeV protons. Three time structures can be identified. The prompt particles, γ-rays
in their majority, reach i-TED within the first 10 ns. A second component, which extends up to 1 ms after the proton bunch,
contains both neutrons moderated in the phantom and γ-rays originated in neutron capture reactions, dominated by the 2.2 MeV
produced in the 1H(n,γ) reaction. Beyond 1 ms, the third emission γ-ray component is related to the decay of the unstable nuclei
produced in the phantom, simulated with the G4RadioactiveDecay model included by default. To avoid the full simulation of
the decays, the transport of particles was limited to 1 ms. The add-back spectra of i-TED operated in coincidences is shown in
the right panel of Fig. 11. This figure shows the strong reduction of the neutron sensitivity when a time cut of 10 ns is applied.
The integral of the gamma- and neutron-induced spectra of Fig. 11 correspond to the results of i-TED (LaCl3) presented in
Fig. 7.

Compton imaging algorithms
Effective Prompt Gamma ray monitoring requires images with spatial resolutions down to a few mm and reconstruction times
of the order of a few seconds, at most. Compton imaging uses as a fundamental ingredient the Compton scattering law and thus,
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Figure 11. Time distribution (log scale) of the γ-ray and neutron events registered in i-TED (left) and corresponding add-back
energy spectrum for all and prompt (t<10 ns) events (right).

most Compton cameras employ two layers, or more, of position sensitive detection planes. The direction of the scattered γ-ray
is determined from the interaction position in both detection planes. In case that the scattered γ-ray deposits all its energy in the
second detection plane, the incident γ-ray energy can be determined by adding-up the deposited energy in the first and second
detection planes. The Compton imaging algorithms used in this work are based on this assumption, whose validity is extended
by means of a supplementary Machine Learning classifier, that will be discussed in the following section.

There exist many different imaging reconstruction algorithms, each of them with advantages and drawbacks. For instance,
algorithms based on Maximum Likelihood Expectation Maximization62, 63 have shown excellent position reconstruction
accuracy, but they require previous computation of the system response matrix. Since the aim of this work is to study the
applicability of an imager like i-TED for clinical purposes, we have chosen algorithms which do not require any previous
system response calculation. Those algorithms are listed as follow:

• Fast Back-projection (BP)64: This is the simplest, limited spatial resolution, but fastest Compton imaging reconstruction
algorithm. Developed by Wilderman in 1998, the image of the individual γ-rays is obtained from the intersection of
the back-projected Compton cones along the image plane, where the γ-ray source is located. The general quadratic
curve from this intersection leads to a set of possible positions for the γ-ray source origin in the image plane. The final
Compton image is made by the superposition of all the individual γ-ray images. While the algorithm is very fast, the
spatial resolution is quite poor, when compared to other algorithms (see for example Fig 3).

• Stochastic Origin ensemble (SOE)44: The SOE algorithm for Compton imaging was developed originally by Andreyev
in 2016. It is a Monte Carlo Markov Chain Method based on the Metropolis-Hasting algorithm and does not require
any forward or backward projections. The drawback of this algorithm is related to its iterative nature. The initial image,
obtained from all the statistics available, is generated by random sampling of the possible positions of the γ-ray source
within the intersection of Compton conical surfaces and the image plane. Once this first image is created, the iterative
process begins by randomly choosing a γ-ray event. A new position for this event is sorted in the image space constrained
to its Compton conical surface. Then, this new position is either accepted or rejected with an acceptance A based on the
ratio between the local density of γ-ray events in the new (λ ′i ) and old (λi) positions:

A = min
(

1,
λ ′i +1

λi

)
(1)

This is repeated for a number of times equivalent to the available statistics. This process corresponds to an iteration and it
is repeated until a stationary situation is reached. The number of iterations required depends on the specific problem,
such as the available statistics and the binning of the Compton image.

• Analytical reconstruction (AA)45: An analytical inversion of the Compton imaging problem based on spherical
harmonics was developed by Tomotani and Hisarawa in 2002. The approximate solution given a position in the image
space,~s, is described as:

f (~s)≈
∫ cosωmax

cosωmin

dcosω

∫
S

d~tk−1(~t,~p;cosω)g(~t;cosω) (2)
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where~t is an unit vector into the projection space, ωmin and ωmax are the minimum and maximum Compton scattering
angles included in the calculation, g(~t;cosω) is the projection data in the image space and k−1(~t,~p;cos(ω)) is the
inversion kernel described as

k−1(~t,~p;ω) =
Nmax

∑
n=0

2n+1
4πHn

Pn(cosω)Pn(~s ·~t)

with Hn given by

Hn =
∫ cosωmax

cosωmin

σ(cosω)P2
n (cosω)dcosω. (3)

Nmax is the maximum number of terms involved in the calculation, Pn is the Legendre polynomial of order n and σ(cosω)
is the Klein-Nishima Compton differential cross-section65. The drawback of this algorithm is the large number of
calculations required to get a Compton image.

The reconstruction time depends remarkably on the complexity of the involved algorithms and the fine tuning of their
parameters. Its complexity is reflected on the spatial resolution achieved and thus, on the quality of the reconstructed images.
In order to evaluate the best suitable algorithm for PG monitoring, a comparison benchmark using 20000 γ-ray events leading
to interactions in both layers were used. The results for the computing time obtained in this benchmark study are displayed in
Table 3.

Algorithm Parameters Time (s)
BP None <5
SOE niter = 1000 14
AA (CPU Single-thread) nMaxDeg = 70 1821
AA (CPU Multithreading-8) nMaxDeg = 70 260
AA (GPU) nMaxDeg = 70 15

Table 3. Reconstruction time for a Compton image of 20000 events. The relevant parameters for the SOE and AA algorithms
are indicated in the second column (see text for details).

As the results indicate, the fastest algorithm is BP followed by SOE and AA, being the latest a factor 100 slower than BP.
However, given the superior spatial resolution of AA, both multi-threading and CUDA52 implementations were used to make
this algorithm time competitive with the others. Compared to the single-thread version, the multi-thread implementation, with
a total of eight threads, has a speed factor of about 7.6. Despite the improvement, the time required to get the image is still
not competitive for PG imaging with a factor between 17 and 30 times slower than the other algorithms. On the contrary, the
CUDA version, with a speed factor of about 121 with respect to the singled-threaded version, reaches reconstruction times of
15 s, comparable to the SOE algorithm (14 s). It is worth to mention that the CUDA implementation was executed in modern
NVIDIA Gpus: a NVIDIA GeForce RTX 2060 and NVIDIA GTX 1080 Ti with compatible execution times.

Machine-learning aided full-energy event selection
The i-TED detector, as any two-plane Compton Camera, bases its working principle on the full energy deposition of the γ-ray
in the absorber (A) plane after a Compton interaction in the scatter (S) layer. However, only a fraction of the coincidences,
ranging from 47% for 1 MeV γ-rays to just 5% at energies around 7 MeV, satisfy this condition. The remaining fraction leads
to a wrong reconstruction of the Compton angle and, as a consequence, an increase in the image background and a degradation
of the spatial resolution. Aiming at improving the fraction of true Compton events, we have implemented a Machine-Learning
algorithm for the identification of full-energy events.

To train and test the ML algorithms in the discrimination of events with full energy deposition (peak) and those with
partial energy escape (non-peak), we performed dedicated simulations of the response of the i-TED detectors to 5×1010 γ-rays
of energies homogeneously distributed between 200 keV and 7 MeV and spatially originated in a random position within
a 20×20×20 air cube separated 50 mm from the detector face, replicating the position of the phantom. For these ancillary
simulations, we used the same physics models and distance between the S- and A-planes of i-TED than before. Each MC
event (S&A coincidence) contains the same eight features determined with the detector in a real measurement: 3D coordinates
of the γ-ray interactions in the two PSDs (6), energy deposited in the S- and A-planes (Es, Ea) (2). The energy and position
resolutions of the detector were included as described before. Additionally, the Compton angle, calculated from the deposited
energies, and its probability according to the Klein-Nishina formula65 for a γ-ray energy Eγ= Ea+Es, were also included in the
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training to improve performance. The MC output was split into 14 energy intervals of add-back deposited energy between
200 keV and 7 MeV and the same number (∼106) of either kind of events were selected from the MC output for each energy
interval. For each energy range we trained an independent algorithm.

In this work, the performance of several state-of-the-art ML algorithms included in Scikit-learn Python module66 was
evaluated. The Scikit-learn algorithms evaluated were k-Nearest neighbors, Logistic Regression, Support Vector Classifier,
Gaussian Naive Bayes, Random Forest, AdaBoost and Quadratic Discriminant Analysis. However, the best classification
results in terms of accuracy were obtained for other two ML algorithms: Boosted decision trees implemented in XGBoost67

and Artificial Neural Networks implemented in Tensorflow49, 68.

Figure 12. Left: Fraction of correctly identified peak events (dashed), wrongly classified non-peaks (solid) and neutron events
(squares) as a function of the add-back deposited energy. Right: peak-to-non-peak gain factor as a function of the add-back
deposited energy. In both panels, the black and red lines represent, respectively, the results with only γ-ray events and after
including the neutron events.

The XGBoost classifier was optimized using the Scikit-learn GridSearchCV method. The best results were obtained using
140 trees with a deep of 4 and a gamma parameter of 0.1. The rest of parameters were set to default. The classifier output is
given by a probability number between 0 (No full energy event) and 1 (Full energy event). The discrimination threshold for this
classifier was set to 0.5. The Tensorflow classifier consists of a stack of four fully connected layers. In the first three layers,
256 neurons per layer with rectified linear activation function were used. In the last layer, a single fully connected neuron
with a sigmoid activation function was used with the purpose to provide a probability number. The architecture and activation
function was chosen based on the best performance in terms of accuracy along the entire range. The loss function used for the
minimization was binary cross-entropy. As in the case of XGBoost, the identification threshold was set to 0.5.

One of the best performing ML-classification algorithm, based on Tensorflow, was used for the final results of this work.
The accuracy of this algorithm was quantified on i-TED events from the simulations of the proton beam prior to its application
to the image reconstruction. As shown in Fig. 12, the ML algorithm is able to correctly recognize 65 to 73% of the full-energy
events among the prompt gamma events registered in i-TED. On the other hand, 35 to 40% of the non-peak γ-ray events are
wrongly predicted as full-energy. As a combination of both results, this algorithm enhances the peak-to-background ratio for by
a factor of 1.5-2.1 (see right panel of Fig. 12). This classifier is also able to reject about 50% of the neutron events. The final
peak-to-total gain factor, after the neutron events are included, ranges from 1.4 to 1.9 (see Fig. 12).

The improvement in the extracted Compton images after the ML-aided full-energy selection has been shown in Fig. 5 for
the Analytical reconstruction, which provides the best spatial resolution. However, the impact of the ML-classification in the
Compton images of Fig. 3 is even more sizable for those reconstructed with the SOE and BP algorithms. Fig. 12 shows the 1D
profiles obtained from these images, showing the clear enhancement in the peak-to-background ratio related to the application
of these ML-based solution.
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