A new C6D6 detector with SiPM readout

V. Babiano, L. Caballero, <u>C. Domingo-Pardo</u>, I. Ladarescu, J.L. Taín (IFIC)

C. Guerrero, J. Lerendegui-Marco, J.M.Quesada (US)

F. Calviño, A. Casanovas, A. Tarifeño-Saldivia (UPC)

The n_TOF Collaboration

Outline:

- Brief evolution of the C6D6 zoo @ n_TOF
- Objectives of a new C6D6 design
 - Neutron sensitivity
 - Electrical signal response
 - B-field insensitivity
- Pros- and cons of the new design
- Proposed prototype development and tests

Brief evolution of C6D6 detectors at n_TOF:

2000

2015-2018

- → Further **reduce the intrinsic Neutron Sensitivity** (compared to state-of-the-art C6D6)
- \rightarrow Better suited for high CRs and γ -flash (EAR2) by reducing volume (1/4 L6D6) \rightarrow Better suited for high En-range
- \rightarrow Clean electrical output signals (no VDs \rightarrow no rebounds \rightarrow To be tested in the lab during LS2) \rightarrow Reliable PSA
- → Fast response, comparable or better than PMTs → Well suited for neutron-TOF
- → By construction, **insensitive to B-fields** (unlike PMTs), no need for mu-metal
- → Low voltage supply (+30V bias, may even think of battery powered detectors for reducing noise loops)

- → Further **reduce the intrinsic Neutron Sensitivity** (compared to state-of-the-art C6D6)
- \rightarrow Better suited for high CRs and γ -flash (EAR2) by reducing volume (1/4 L6D6) \rightarrow Better suited for high En-range
- \rightarrow Clean electrical output signals (no VDs \rightarrow no rebounds \rightarrow To be tested in the lab during LS2) \rightarrow Reliable PSA
- → Fast response, comparable or better than PMTs→ Well suited for neutron-TOF
- → By construction, **insensitive to B-fields** (unlike PMTs), no need for mu-metal
- → Low voltage supply (+30V bias, may even think of battery powered detectors for reducing noise loops)

→ Aspect 1: neutron sensitivity

C6D6/PMT Neutron sensitivity: could it be improved further?

→ Aspect 1: neutron sensitivity

L6D6 Response to Neutrons (C. Guerrero & J.Lerendegui-Marco, US):

N_TOF Collaboration Meeting, 7 October 2014

- ➤ Low Sensitivity:
 - ➤ 20h-Long simulations , 10⁸ neutrons
 - ➤ Maximized geometrical efficiency:

 2π emitting source at <1mm from detector

C6D6/PMT Neutron sensitivity: could it be improved further?

→ Aspect 1: neutron sensitivity

L6D6 Response to Neutrons (C. Guerrero & J.Lerendegui-Marco, US):

Analysis of main contributions to neutron sensitivity of the L6D6 :

PMT is main contributor (E< 500keV)

CF main cotribution at ~2.2 MeV

→ Thus, avoiding PMT (thereby reducing also total amount of CF) should help to reduce NS further down(!)

- → Further reduce the intrinsic Neutron Sensitivity (compared to state-of-the-art C6D6)
- \rightarrow Better suited for high CRs and γ -flash (EAR2) by reducing volume (1/4 L6D6) \rightarrow Better suited for high En-range
- \rightarrow Clean electrical output signals (no VDs \rightarrow no rebounds \rightarrow To be tested in the lab during LS2) \rightarrow Reliable PSA
- → Fast response, comparable or better than PMTs→ Well suited for neutron-TOF
- → By construction, **insensitive to B-fields** (unlike PMTs), no need for mu-metal
- → Low voltage supply (+30V bias, may even think of battery powered detectors for reducing noise loops)

C6D6/PMT response: affected by artifacts (rebounds) probably arising from PMT's Voltage Divider:

→ Aspect 2: ringing and rebounds produce a "dirty" electrical response

- → Further reduce the intrinsic Neutron Sensitivity (compared to state-of-the-art C6D6)
- \rightarrow Better suited for high CRs and γ -flash (EAR2) by reducing volume (1/4 L6D6) \rightarrow Better suited for high En-range
- \rightarrow Clean electrical output signals (no VDs \rightarrow no rebounds \rightarrow To be tested in the lab during LS2) \rightarrow Reliable PSA
- → Fast response, comparable or better than PMTs → Well suited for neutron-TOF
- → By construction, **insensitive to B-fields** (unlike PMTs), no need for mu-metal
- → Low voltage supply (+30V bias, may even think of battery powered detectors for reducing noise loops)

C6D6/PMT B-field sensitivity: can we avoid it?

→ Aspect 3: mu-metal & magnetic fields screening

From conventional C6D6/PMT towards C6D6/SiPM: the proposal to develop a new C6D6

- → Aspect 1: "dirty" signal response
- → Aspect 2: neutron sensitivity (PMT)
- → Aspect 3: B-field sensitivity (mu-metal)

Replace PMT+VD by SiPM

"Mock" prototype of IFIC-C6D6: i6D6

- → 250 ml C6D6
- → SiPM Sensl 50x50mm²
- → 1/4th of L6D6 volumen (four of these make one L6D6)

C6D6/SiPM Project summary: Pros & Cons, Next steps

Pros:

- → Further **reduce the intrinsic Neutron Sensitivity** (compared to state-of-the-art C6D6)
- \rightarrow Better suited for high CRs and γ -flash (EAR2) by reducing volume (1/4 L6D6) \rightarrow Better suited for high En-range
- \rightarrow Clean electrical output signals (no VDs \rightarrow no rebounds \rightarrow To be tested in the lab during LS2) \rightarrow Reliable PSA
- → Fast response, comparable or better than PMTs → Well suited for neutron-TOF
- → By construction, **insensitive to B-fields** (unlike PMTs), no need for mu-metal
- → Low voltage supply (+30V bias, may even think of battery powered detectors for reducing noise loops)

Cons:

- → Need 4 channel Digitizers per 1L volumen (4 times the # channels than same efficiency with L6D6)
- → Needs some development, in particular a customized C6D6 Carbon Fiber cell
- → Thermal dependency of the SiPM gain (there are simple solutions)

C6D6/SiPM development: next steps

- → **Prototype** replacing Bicron PMT by SiPM and tests with sources (IFIC/CERN) for:
 - → gain-stability, resolution, count-rate capability
- → Neutron sensitivity study at CNA using n-beam
- → Study of the neutron-sensitivity via MC (US/C.Guerrero,J.Lerendegui)