i-TED Commissioning Plans

V. Babiano, J. Balibrea, L. Caballero, D. Calvo, <u>C. Domingo-Pardo</u>, I. Ladarescu, J. Lerendegui-Marco, J.L. Tain (IFIC)

C. Guerrero, J.M.Quesada (US)

F. Calviño, A. Casanovas, A. Tarifeño-Saldivia (UPC)

D. Cano-Ott, V. Alcayne, T. Martínez (CIEMAT)

n_TOF Local Team &

The n_TOF Collaboration

n_TOF Collaboration Meeting, CERN, 10th June 2020

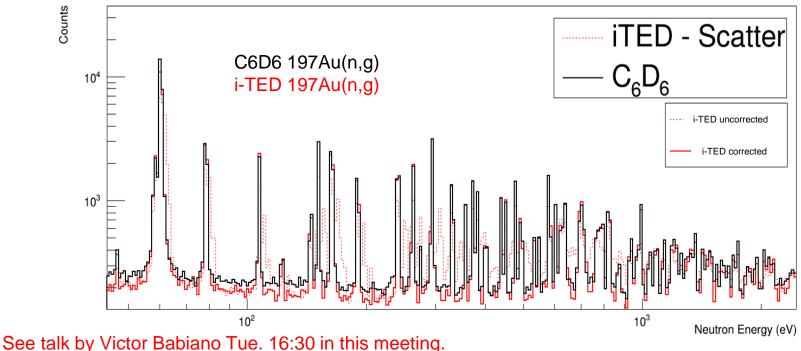
- **i-TED:** Short description of detector assembly
- Main aspects to commission at CERN n_TOF in 2021:
 - **Trigger** time-stamp issue (see Victor Babiano's talk @Tue.16:30)
 - Count-rate capability @ EAR2 (see J. Lerendegui's talk, CERN Feb. 2020 link)
 - Background response (see J. Lerendegui's talk @ Wed.15:45)
- Summary & Outlook

i-TED in a nutshell

- **i-TED:** Short description of detector assembly At variance with previous versions (iTED2 and iTED5.3), in 2021 i-TED will comprise 20 large monolithic LaCl3 crystals optically coupled to 8x8 pixelated SiPMs, featuring a total of **1280 readout channels**.
 - \rightarrow High resolution LaCl3(Ce) Crystals \rightarrow SiPM photosensors (8x8 pixels) Absorber PSD Capture sample \rightarrow ASIC-based readout electronics Scatter PSD \rightarrow Al-based analysis algorithms Neutron 2021 4π i-TED beam 20 LaCl3, 1280 ch ⁶LiH layers Photosensors

2018 i-TED prototype tested (3 LaCl3 crystals, 192 channels)

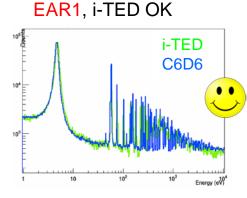
- **i-TED:** Short description of detector assembly
- Main aspects to commission at CERN n_TOF in 2021:
 - Trigger time-stamp issue (see Victor Babiano's talk @Tue.16:30)
 - Count-rate capability @ EAR2 (see J. Lerendegui's talk, CERN Feb. 2020 link)
 - **o Background** response (see J. Lerendegui's talk @ Wed.15:45)
- Summary & Outlook

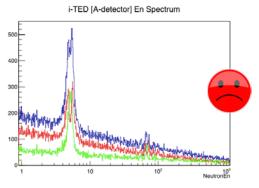

- Issue: unlike C6D6, i-TED cannot detect the gamma-flash and therefore an external trigger signal is required to build TOF-spectra
- Status: previous attempts to use an external trigger did not work reliably
- Plans & Options:
 - Ancillary trigger detector coupled to i-TED DACQ
 - External PS trigger using a NIM or TTL input-signal (instead of LVCMOS)
 - Protect trigger section of i-TED DACQ properly (Faraday Cage)
- Where: EAR1 and EAR2
- When: During Target#3 commissioning, only a gold sample (or similar) is needed.
- Compatibility: can be run with any other detector tests: sTED, L6D6, B6D6, SiMON, etc

- Current i-TED triggering system has been found (commissioning 2018) to be unreliable
- False triggers lead to splitted resonances and loss of "resolution"
- It can be corrected via software, but this is highly demanding and a non suitable solution
- Present triggering system can be improved

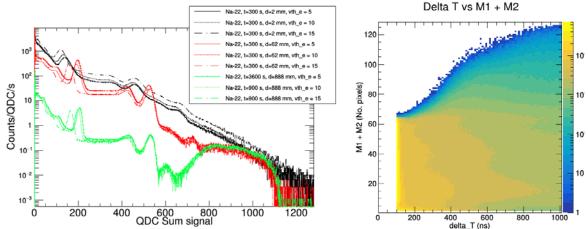
- Issue: unlike C6D6, i-TED cannot detect the gamma-flash and therefore an external trigger signal is required to build TOF-spectra
- Status: previous attempts to use an external trigger did not work reliably
- Plans & Options:
 - Ancillary trigger detector coupled to i-TED DACQ
 - External PS trigger using a NIM or TTL input-signal (instead of LVCMOS)
 - Protect trigger section of i-TED DACQ properly (Faraday Cage)
- Where: EAR1 and EAR2
- When: During Target#3 commissioning, only a gold sample (or similar) is needed.
- Compatibility: can be run with any other detector tests: sTED, L6D6, B6D6, SiMON, etc

- **i-TED:** Short description of detector assembly
- Main aspects to commission at CERN n_TOF in 2021:
 - Trigger time-stamp issue (see Victor Babiano's talk @Tue.16:30)
 - Count-rate capability @ EAR2 (see J. Lerendegui's talk, CERN Feb. 2020 link)
 - Background response (see J. Lerendegui's talk @ Wed.15:45)
- Summary & Outlook


- Issue: i-TED DACQ has limitations to cope with high count-rates at EAR2
- Status: stress tests @ lab have shown max. CR of 500kHz
- Plans & Options:
 - Enlarge sample-detector distance: trade-off efficiency % counting-rate
 - Use high-threshold settings on readout ASICs -> Reduce dead-time
 - Implement alternative ToT signal processing approach
- Where: EAR2
- When: During Target#3 commissioning, only a gold sample (or similar) is needed.
- Compatibility: can be run with any other detector tests: sTED, L6D6, B6D6, SiMON, etc



High count-rate response



EAR2, i-TED KO

Max CR = 500 kHz /standard values

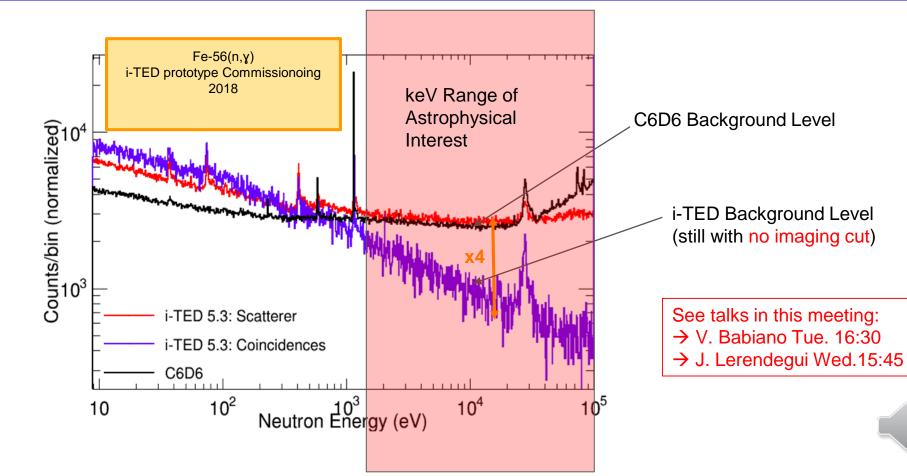
 \rightarrow With standard ASIC configuration the maximal CR that can be measured with i-TED is of about 500kHz

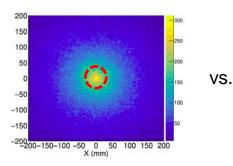
 \rightarrow Test if a measurement would still be feasible at EAR2, below this CR, enlarging detector-sample distance

 \rightarrow Test other (less conventional) ASIC parameters (threshold ToT, etc) in order to be able to cope with the EAR2 CRs

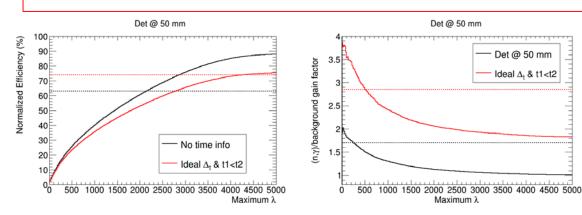
- Issue: i-TED DACQ has limitations to cope with high count-rates at EAR2
- Status: stress tests @ lab have shown max. CR of 500kHz
- Plans & Options:
 - Vary sample-detector distance: trade-off efficiency % counting-rate
 - Use high-threshold settings on readout ASICs -> Reduce dead-time
 - Implement alternative ToT signal processing approach
- Where: EAR2
- When: During Target#3 commissioning, only a gold sample (or similar) is needed.
- Compatibility: can be run with any other detector tests: sTED, L6D6, B6D6, SiMON, etc

- **i-TED:** Short description of detector assembly
- Main aspects to commission at CERN n_TOF in 2021:
 - Trigger time-stamp issue (see Victor Babiano's talk @Tue.16:30)
 - Count-rate capability @ EAR2 (see J. Lerendegui's talk, CERN Feb. 2020 link)
 - Background response (see J. Lerendegui's talk @ Wed.15:45)
- Summary & Outlook

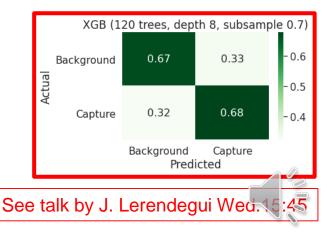

- Issue: optimize i-TED background rejection capabilities & optimization
- Status:
 - Preliminary results from prototype commissioning in 2018 (Victor Babiano's talk Tue. 16:30) → Analytical Compton (Lambda-method)
 - O MC simulations based on experimental background spectra (Jorge Lerendegui's talk Wed.15:45) → ML based algorithms
- Plans & Options:
 - Carbon sample \rightarrow artificially increase scattered neutron background
 - Iron sample \rightarrow Signal-to-background test
- Where: EAR1 & EAR2
- When: During Target#3 commissioning, in parallel to other detector tests


Background response

Background: ML vs. g-ray Imaging



erc European Research Council


Convolutional Neural Networks

- ML Background Rejection Models / Classifiers:
 - O k-Nearest neighbors: from sklearn.neighbors import KNeighborsClassifier
 - O Logistic Regression: from sklearn.linear_model import LogisticRegression
 - O Support Vector Classifier (SVC): from sklearn.svm import SVC
 - O Gaussian Naive Bayes (NB): from sklearn.naive_bayes import GaussianNB
 - O Random Forest: from sklearn.ensemble import RandomForestClassifier
 - O XGBoost Classifier: from xgboost import XGBClassifier
- ML methods have the advantage, versus the analytical g-ray imaging approach, that they can be effectively implemented without a significant loss of g-ray efficiency and provide a larger gain in S/B-ratio (!)

(n,g) efficiency fraction = True positive = 68%

(n,g)/background= True positive/ False Negative = 0.68/0.33 = 2.06

Summary & Outlook

- Most remaining aspects of i-TED can be commissioned in parallel to the Target#3 commissioning and to other detector's commissioning, such as
 - O **Trigger** time-stamp issue
 - O Count-rate capability at EAR2
- More specific to i-TED is the need of data for optimization of background rejection algorithms:
 - O Background response: dedicated runs with natC, 197Au and 56Fe, which can serve also for other detector's commissioning

Tentative commissioning beam-time request (based on previous experience 2018):

Sample	Aim	Protons EAR1 EAR2	Area
197Au	Trigger / i-TED splitted	1E17	EAR1/EAR2
197Au	Count Rate	3E17	EAR2
natC	Background (n/g bkg)	2E17 1E17	EAR1 + EAR2
Lead	Background (in-beam g)	2E17 1E17	EAR1 + EAR2
56Fe	S/B-Ratio Test	1E18 5E17	EAR1 + EAR2

Most beam-time compatible with other detectors & techniques tests? e.g. sTED, L6D6, B6D6 (refilled), new PHWT tests (Samuel), etc?

To be coordinated within next detector meeting?