Tests proposed to investigate the origin of the rebounds in the C_6D_6 signals

V. Babiano, L. Caballero, D. Calvo, C. Domingo-Pardo, D. Esperante, I. Ladarescu, J.L. Taín (IFIC)
The n_TOF Collaboration
• Nature & impact of the signal ringing and rebounds

• First obvious things to check

• Impedance matching on a distributed transient-signal system

• Impedance measurements

• Examples with a similar PMT+VD

• Proposed tests for the n_TOF set-up during LS2
Digitized C6D6 signals:

Rebounds time-distribution:

Rebounds amplitude-distribution:

Capture Neutron Spectra:

See Adrià Casanovas and Victor Babiano’s talks from Granada’s n_TOF Collaboration Meeting, 2018
The first obvious things to check with an oscilloscope:

a) inspect output signal “directly” from detector
b) inspect output signal after Patch-Panel (PP)
c) inspect output PMT signal at Digitizer input
5.1.5 Countermeasures for fast response circuits

As shown in Figure 5-12, inserting a lowpass filter comprised of R_1 and C_1 into the high-voltage supply line is also effective in reducing noise pickup from the high-voltage line. The resistor R_1 is usually several tens of kilohms, and a ceramic capacitor of 0.001 to 0.05 microfarads which withstands high voltage is frequently used as C_1.

In applications handling a fast pulsed output with a rise time of less than 10 nanoseconds, inserting damping resistors R_{0} into the last dynode as shown in Figure 5-11 and if necessary, R_{a} into the next to last dynode can reduce ringing in the output waveform. As damping resistors, noninduction type resistors of about 10 to 200 ohms are used. If these values are too large, the time response will deteriorate. Minimum possible values should be selected in the necessary range while observing the actual output waveforms. Figure 5-13 shows typical waveforms as observed in a normal voltage-divider circuit with or without damping resistors. It is clear that use of the damping resistors effectively reduces ringing.
Prompt rebounds: impedance (Z) mismatch along the transmission lines?

Impedance mismatch?
(just an option between many other hypothesis)
RF Simulation (LT-Spice) of our problem: a perfectly Z-matched set-up

The setup:

The model (ideal):

Simulation Program with Integrated Circuit Emphasis
The setup:

- Detector: 50 Ω (50 ns)
- Coaxial cable 1: 50 Ω (50 ns)
- Patch Panel
- Coaxial cable 2: 50 Ω (50 ns)
- Digitizer: 50 Ω

The model (ideal):

RF Simulation (LT-Spice) of our problem: a perfectly Z-matched set-up

The result (ideal):

1. Current (mA)
2. Voltage (V)
The setup:

Detector

\[50 \, \Omega \]

Coaxial cable 1

50ns

Patch Panel

Coaxial cable 2

50ns

Digitizer

\[50 \, \Omega \]

The model (ideal):

\[\text{RF Simulation (LT-Spice)} \]

\[\text{of our problem: a perfectly Z-matched set-up} \]

\[\text{g-ray} \]

Current (mA)

Voltage (V)

0ns 30ns 60ns 90ns 120ns 150ns 180ns 210ns 240ns 270ns 300ns 330ns

V(n001) V(n002)
RF Simulation (LT-Spice) of our problem:

The setup:

The model (ideal):

The result (ideal):
RF Simulation (LT-Spice) of our problem:

The setup:

Detector

50 Ω

Coaxial cable 1

50ns

Patch Panel

Coaxial cable 2

50ns

Digitizer

50 Ω

The model (ideal):

The result (ideal):

current (mA)

voltage (V)
The setup:

Detector \(50 \, \Omega \) → Coaxial cable 1 \(50 \text{ns} \) → Patch Panel → Coaxial cable 2 \(50 \text{ns} \) → Digitizer \(150 \, \Omega \)

The model (ideal):

RF Simulation (LT-Spice) of our problem:

The result (ideal):

- Voltage (V)
- Current (mA)
RF Simulation (LT-Spice) of our problem:

The setup:

The model (ideal):

The result (ideal):
The setup:

The model (ideal):

The result (ideal):

RF Simulation (LT-Spice) of our problem:
RF Simulation (LT-Spice) of our problem:

The setup:

The model (ideal):

The result (ideal):
The setup:

Detector

150 Ω

Coaxial cable 1
50ns

Patch Panel

Coaxial cable 2
50ns

Digitizer

50 Ω

The model (ideal):

RF Simulation (LT-Spice) of our problem:

The result (ideal):
RF Simulation (LT-Spice) of our problem:

The setup:

Detector
- 150 Ω
- 50ns

Coaxial cable 1

Patch Panel
- 50 ns

Coaxial cable 2

Digitizer
- 50 Ω

The model (ideal):

The result (ideal):
RF Simulation (LT-Spice) of our problem:

The setup:

The model (ideal):

The result (ideal):

Detector Digitizer

100 Ω

Coaxial cable 1 50ns

Patch Panel 75 Ω

Coaxial cable 2 50ns

50 Ω

R2

100

T1

T2

100meg

0

0

0.5

SINE

R1

50

R3

75

V1

trans 0.350n 0

current (mA)

voltage (V)

0ns 30ns 60ns 90ns 120ns 150ns 180ns 210ns 240ns 270ns 300ns 330ns
RF Simulation (LT-Spice) of our problem:

The setup:

The model (ideal):

The result (ideal):
If it is a poor Z-matching... measure impedances at detector, cables and digitizers...

A detector response (impulse) is actually a contribution of many frequencies (in the frequency domain):

So we need to inspect IMPEDANCE as a function of FREQUENCY, across the full bandwidth of the sampling digitizer.

DC-World:

\[Z_{DC} = 100k\Omega \]

RF-World:

Resistor physical (real world) equivalent circuit model
Impedance Z measurement across full bandwidth (0-500MHz) using a Vector-Network-Analyzer (VNA)

A VNA produces a RF signal (a1) and measures the reflected wave (b1). A frequency sweep is made to cover the full range:

\[
\Gamma = S_{11}(f) = \frac{b_1}{a_1} = \frac{Z_L(f) - Z_S(f)}{Z_L(f) + Z_S(f)}
\]

Scattering coefficients measured with a VNA (reflection coefficient S11):
Impedance Z measurement using an arbitrary PMT+VD (just one example):
Impedance Z measurement using an arbitrary PMT+VD (just one example):
5.3.4 Output circuit for a fast response photomultiplier tube

For the detection of light pulses with fast rise and fall times, a coaxial cable with 50-ohm impedance is used to make connection between the photomultiplier tube and the subsequent circuits.

To transmit and receive the signal output waveform with good fidelity, the output end must be terminated in a pure resistance equal to the characteristic impedance of the coaxial cable as shown in Figure 5-35. This allows the impedance seen from the photomultiplier tube to remain constant, independent of the cable length, making it possible to reduce "ringing" which may be observed in the output waveform. However, when using an MCP-PMT for the detection of ultra-fast phenomena, if the cable length is made unnecessarily long, distortion may occur in signal waveforms due to a signal loss in the coaxial cable.

If a proper impedance match is not provided at the output end, the impedance seen from the photomultiplier tube varies with frequency, and further the impedance value is also affected by the coaxial cable length, and as a result, ringing appears in the output. Such a mismatch may be caused not only by the terminated resistance and the coaxial cable but also by the connectors or the termination method of the coaxial cable. Thus, sufficient care must be taken to select a proper connector and also to avoid creating impedance discontinuity when connecting the coaxial cable to the photomultiplier tube or the connector.

Special cases of lossless terminated lines:

Short circuit ($Z_L = 0 \rightarrow \Gamma = -1$):

$$V(z) = V_0^+ e^{-j\beta z} + V_0^- e^{j\beta z}, \quad V(z) = \frac{V_0^+}{Z_0} (e^{-j\beta z} + \Gamma e^{j\beta z}).$$

$$I(z) = \frac{V_0^+}{Z_0} e^{-j\beta z} - \frac{V_0^-}{Z_0} e^{j\beta z}, \quad I(z) = \frac{V_0^+}{Z_0} (e^{-j\beta z} - \Gamma e^{j\beta z}).$$

Open circuit ($Z_L = \infty \rightarrow \Gamma = 1$):

$$V(z) = V_0^+ (e^{-j\beta z} - e^{j\beta z}) = -2jV_0^+ \sin \beta z, \quad Z_{in} = -jZ_0 \cot \beta \ell$$

$$I(z) = \frac{V_0^+}{Z_0} (e^{-j\beta z} + e^{j\beta z}) = \frac{2V_0^+}{Z_0} \cos \beta z, \quad Z_{in} = \frac{1}{jZ_0 \tan \beta \ell}$$

Transmission line impedance equation:

$$Z_{in} = Z_0 \frac{Z_L + jZ_0 \tan \beta \ell}{Z_0 + jZ_L \tan \beta \ell}, \quad \lambda = \frac{2\pi}{\beta}$$
<table>
<thead>
<tr>
<th>What?</th>
<th>When?</th>
<th>Setup</th>
<th>Where?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response</td>
<td>LS2 2019-2020</td>
<td>Oscilloscope</td>
<td>Detector, PatchPanel, at Digitizer input</td>
</tr>
<tr>
<td>Impedance</td>
<td>LS2 2019-2020</td>
<td>VNA</td>
<td>Detector, PatchPanel, at Digitizer input</td>
</tr>
<tr>
<td>Voltage Divider</td>
<td>LS2 2019-2020</td>
<td></td>
<td>PMT</td>
</tr>
</tbody>
</table>