⁹⁴Nb(n,y) proposal

V. Babiano, J. Balibrea-Correa, L. Caballero, D. Calvo, C. Domingo-Pardo, I. Ladarescu, J. Lerendegui-Marco,

J.L. Taín (IFIC)

C. Guerrero, J.M.Quesada (US)

F. Calviño, A. Casanovas, A. Tarifeño-Saldivia (UPC)

D. Cano-Ott, V. Alcayne, E. Mendoza (CIEMAT)

E. A. Maugeri, D. Schumann (PSI)

U. Köster, S. Heinitz

Sergio Cristallo (INFN-Bologna)

n_TOF Collaboration Meeting, CERN, 11th June 2020

- Motivation
 - Astrophysical.
 - Nuclear waste.
 - State of art for $^{94}Nb(n,\gamma)$.
- Samples and experimental setup
 - Samples and detectors.
 - Threshold and efficiency.
- Expected counting rate
 - Level of the different components.
- Monte Carlo experiment
 - Feasibility of RRR and URR.
- Possible (future) activation measurement in NEAR
- Summary and conclusions

Astrophysical motivation

FIG. 1.—The s-process path in the molybdenum and technetium mass region

Interesting astrophysical case:

• Anomalies on **Mo isotopes** found in presolar grains. Earth and planetary science letters, Vol473, 215-226 (2017) 94

Very Preliminary calculations from Sergio Cristallo (Many thanks!):

Increased the MACS by 2 (482 mb reference) @ at 30 keV \rightarrow +14% ⁹⁴Mo/⁹⁶Mo ratio.

• Isotope of interest for β-decays in plasmas for stellerar nucleosynthesis (PANDORA -INFN) EPJ Web of Conferences 227, 010 (2020)

Better constrain the contributions from the s-process and the p-process to the proton-rich ⁹⁴Mo.

Nuclear Energy motivation

⁹⁴Nb isotope is present in low and intermediate nuclear waste:

- Activation of Zr present in different components of the • reactor. Applied Radiation and Isotopes 66 (2008) 24-27
- One of the major contribution to radiotoxicity (No actinides).

A-3.2. Radionuclides of interest

For OPG's DGR, the main radionuclides of interest for the pre-closure safety assessment are (Table A-7): ³H, ¹⁴C, ⁶⁰Co, ⁹⁰Sr, ¹³⁷Cs, ²⁴¹Am and ²⁴¹Pu. For the post-closure safety assessment, the main radionuclides of interest are: ¹⁴C, ³⁶Cl, ⁹³Zr, ⁹⁴Nb, ⁹⁹Tc, ¹²⁹I, ¹³⁵Cs, ²³³U, ²³⁸U, ²³⁸U, ²³³Pa, ²³⁷Np, ²⁴¹Am and ²⁴¹Pu. SFs have also been developed for other DTM nuclides, such as ⁵⁵Fe, ⁵⁹Ni, ⁶³Ni, ⁷⁹Se, ¹²⁶Sn, ²⁴²Cm, ²⁴⁴Cm and

243Am.

Type of radionuclide	Low and intermediate level waste
CP/AP nuclides	C-14, 63Ni, 94Nb, 99Tc, 60Co
FP nuclides	Sr-90, ¹²⁹ I, ¹³⁷ Cs
Alpha emitting nuclides	Total alpha emitting nuclides

TABLE A-11. MAIN RADIONUCLIDES TO BE MEASURED IN LOW AND INTERMEDIATE LEVEL WASTE

State of art: ⁹⁴Nb (n, **y**) measurements

- Experimental data in the thermal point agree within uncertainties.
- No experimental data available for the Resolved Resonance Region (!).
- No data available for the Unresolved Resonance region.

Estimation of Resolved /Unresolved Resonance Region based on TENDL-2019

State of art: ⁹⁴Nb (n, y) measurements

- Experimental data in the thermal point agree within uncertainties.
- No experimental data available for the Resolved Resonance Region (!).
- No data available for the Unresolved Resonance region.

Estimation of Resolved /Unresolved Resonance Region based on TENDL-2019

GOAL: Measure RRR as high in neutron energy as possible.

Available samples and Experimental setup

Sample	A(⁰⁴Nb+⁰Co)[Mbq]	N(^{9₄} Nb) [10¹ ⁸]	ns(^{9₄} Nb)[barn⁻¹⋅10⁻⁵]	N(⁹³ Nb) [10 ²⁰]	ns(⁹³ Nb) [barn⁻¹⋅10⁻⁴]
foil (5) 15x18 mm ²	5.39+(1.026)	4.97813	1.84375	8.81	3.26404
foil (6) 8x36 mm ²	8.92	8.23838	3.05125	16.00	5.92593
wire (2)	4.85	4.47939		9.39	
wire (3)	5.16	4.47939		10.30	

94Nb samples already produced:

- Irradiated together with ⁷⁹Se sample in ILL.
- Hyper-pure ⁹³Nb raw material.

All the samples were **characterized at PSI** in December 2019:

• Exhaustive analysis carried out.

Foil (6) and (5) have better shape for **ToF** measurement. Wire (2) and (3) require "reshape".

Considered the **high activity** of the samples (and the expected 94Nb capture yield):

 $4 C_6 D_6 / C_6 D_6 + SiPM$

• Experimental setup:

Ο

• **EAR 2**.

- J.balibrea
- D. Meeting 2020
- D. Cano-Ott C. Meeting 2020
- Assumptions in CR estimations:
 - BIF=0.25 (EAR2)
 - 1000 bin per decade
 - Efficiency $(n,\gamma)/A$ (MC)
 - Cross section from TENDL-2019

Monte Carlo simulation for 4 C_6D_6 at a reasonable distance (10 cm).

Cascade detection efficiencies calculated for:

• ¹⁹⁷Au(n,γ)

erc European Research Council

- ²⁴²Pu(n,γ)
- ⁶⁰Co (1100-1300 keV)
- ⁹⁴Nb (700-900 keV)

A **reasonable trade off** between (n,γ) efficiency and background suppression is **500 keV**.

Low detection efficiency can be compensated by weighting technique.

Counting rate for ⁹⁴Nb foil in EAR2

Foil (6) with RF

- Included the Resolution Function (Phase III) to check the neutron energy limit resolving resonances:
 - Resolution function Phase III is the worst scenario \rightarrow In 2021 the expected RF should be better.
 - The true yield will lie between the ideal case and RF (Phase III) scenario.
- C₆D₆+SiPM development would help to reduce the level of beam background.

Monte Carlo experiment for ⁹⁴Nb foil (6)

Resampling Monte Carlo experiment to consistently account for feasibility and uncertainties:

- Resampling from individual proton pulses.
- 2.5·10¹⁸ p for isotope under study.
- 0.5 10¹⁸ p for background estimation.

Background subtraction:

- Regular background subtraction applied for RRR measurement feasibility.
- Expected Statistical uncertainty (Conservative).

Background subtraction in the RRR

Remarks:

- For neutron energies below 400 eV the individual TENDL resonances are detectable by the background subtraction.
- For neutron energies above 400 eV the individual TENDL resonances are difficult to detect.

Remember yield including the Resolution function (**Phase III**) is the **worst scenario**!

Expected statistical uncertainty

Statistical uncertainty check:

- Cross check of cross section at thermal energies: Low statistical uncertainty.
- Goal of the measurement: Cross section measurement would be feasible up to < 1keV (RF).
- Unresolved Resonance Region: Complicated background subtraction, still not imposible.

Possible activation measurement in NEAR

neutron fluence

Unfavourable signal to background ratio for URR.

➡

Complicated background subtraction for the Unresolved Resonance Region.

Activation measurement for NEAR station?

- Flux shaping in the NEAR for MACs or "high" energy flux?
- Four samples available with different shapes.
- Isotope candidate for NEAR station:
 - **"Short" half life**: ~35 d.
 - \circ "High" energy γ lines (562,766 keV).

- ${}^{94}Nb(n,\gamma)$ is an interesting measurement:
 - Contributions from the s-process and the p-process to ⁹⁴Mo/ Isotope of interest for β-decays in plasmas.
 - In addition, this is one of the isotopes present in the **nuclear waste**.
- Only a few experimental measurements of this isotope
 - No experimental data exist yet in the RRR/URR.
- ⁹⁴Nb samples already produced -> 2 of them with rectangular shape suitable for ToF:
 - o ⁹³Nb/⁹⁴Nb~1/100.
 - Activity ~ 6-8 Mbq, "high" energy γ lines in the decay.
- High counting rate due to the high intrinsic activity of the sample:
 - Feasible for EAR 2: RRR sure, complicated background subtraction for URR.
 - **High detection threshold** in the detectors for optimal S/B tradeoff (compensated by weighting technique).
- **Reasonable** statistics for RRR using:
 - **2.5**•**10**¹⁸ protons for **isotope** under study.
 - **0.5**•10¹⁸ protons for **background** estimation.
 - RF will determine the "high" neutron energy limit resolving resonances.
 - New development C_6D_6 +SiPM could help to improve situation with the signal/background ratio.
- Possible isotope candidate for NEAR station \rightarrow "Short" half life, "high" γ lines in the decay.

Thank you very much for your kind attention!