MC simulations of i-TED 4π & background rejection studies

V. Babiano, J. Balibrea, L. Caballero, D. Calvo, C. Domingo-Pardo, I. Ladarescu, <u>J. Lerendegui-Marco</u>, J.L. Taín (IFIC) C. Guerrero, J.M.Quesada (US) F. Calviño, A. Casanovas, A. Tarifeño-Saldivia (UPC)

The n_TOF Collaboration

n_TOF Collaboration Meeting, CERN, 9 th-11th June 2020

- Introduction to i-TED and motivation
- MC simulation of i-TED: capture and background events
 - i-TED Response to (n,g) and background
 - Imaging of (n,g) and background
- Background rejection based on MC simulations
 - \circ Analytical imaging cuts: the λ parameter
 - (n,g)/background gain: i-TED vs C6D6
 - ML-based vs analytical background rejection
- ML-based background rejection with i-TED 5.3 data
- Summary

Motivation

- **i-TED Concept:** Combine TED & Compton imaging to reduce extrinsic neutron background
- Plans for final i-TED-4pi
 - Under development but not yet commissioned @ $n_{TOF} \rightarrow$ no experimental data of final detector
 - Commissioning and Se-79(n,g) measurement in 2021/22

Motivation

• **i-TED Concept:** Combine TED & Compton imaging to reduce extrinsic neutron background

• Plans for final i-TED-4pi

- Under development but not yet commissioned @
 n_TOF → no experimental data of final detector
- Commissioning and Se-79(n,g) measurement in 2021/22

• Goal MC simulations:

- Optimization of crystal thickness, S-A distance,...
- Counting rate estimates for Se-79(n,g)
- Optimization of imaging and background rejection
- Study of impact of experimental effects (resolution, backscattering, summing,...)
- Understand results i-TED 5.3 commissioning @ n_TOF and i-TED5 @ IFIC-Lab

Motivation

• **i-TED Concept:** Combine TED & Compton imaging to reduce extrinsic neutron background

• Plans for final i-TED-4pi

- Ounder development but not yet commissioned @
 n TOF → no experimental data of final detector
- Commissioning and Se-79(n,g) measurement in 2021/22

• Goal MC simulations:

- Optimization of crystal thickness, S-A distance,..
- Counting rate estimates for Se-79(n,g)
- Optimization of imaging and background rejection
- Study of impact of experimental effects (resolution, backscattering, summing,...)
- Understand results i-TED 5.3 commissioning @ n_TOF and i-TED5 @ IFIC-Lab

MC simulations of (n,g) and background events

MC Simulation: background rejection

• MC simulations for capture/background discrimination

MC i-TED: Response(n,g) & background

i-TED-5 MC response to (n,g) and background: Singles & coincidences

CAPTURE: Au-197(n,g) (Captugen)

BACKGROUND: Exp. i-TED 5.3 @ EAR1

Absorber more affected by extrinsic background from walls + it shields the scatterer Coincidences (A & S) reduce more strongly the background → → Improved capture/background ratio before imaging

MC i-TED: imaging (n,g) & background

Background rejection based on MC: Imaging and ML algorithms

Imaging cuts using i-TED MC

• Background rejection with imaging cuts: the λ parameter

Low λ values: γ -rays fulfill the intersection condition between the compton cone and the sample

Europear

erc Research Council

> λ distribution for capture and background (MC)

parameterIntersection between
Compton cone &
sample plane
$$\lambda = (n_x a_x + n_y a_y + n_z a_z)^2$$
 $-(1 + 511/(E_1 + E_2) - 511/E_2)^2(a_x^2 + a_y^2 + a_z^2)$ $\cos^2(\theta)$

Imaging cuts using i-TED MC

TOF

Low λ values: γ -rays fulfill the intersection condition between the compton cone and the sample

MC Results of (n,g)/background: i-TED gain with respect to C6D6

Background rejection based on MC: ML algorithms vs analytic

nTOF

• ML-based capture/background discrimination in a nutshell

European

ML-algorithms vs imaging cut (λ)

Europear

ML-algorithms vs imaging cut (λ)

erc Council

Background rejection studies based on i-TED 5.3 data

Au-197: ML provides high (n,g) eff. but background is already low \rightarrow Fe-56 better to check (n,g)/background gain

1) Capture efficiency (1.15 keV res) ML (XGB) : 80 % Imaging λ<1000: 32 % Peak-to-valley gain factor at 1.15 keV
 ML (XGB) : 1.80
 Imaging λ<1000: 1.20

- i-TED: Imaging techniques to suppress the neutron induced background
- Final i-TED 4pi under development and MC simulations are key at this point
 - Optimization of the (n,g)/background discrimination capabilities
 - Realistic capture and background events
- Results of (n,g)/background gain factor based on MC
 - Coincidences + Analytical imaging cuts: i-TED gain factor 4-10 wrt C6D6
 - ML algorithms (XGB) promising: Similar background rejection + x2 (n,g) efficiency
- **ML background rejection with i-TED 5.3 data** (commissioning 2018 EAR1):
 - Training and tested with exp data (Au-197 and Fe-56) → <u>Preliminary results</u>
 - Background rejection equal or better than imaging cuts but
 - (n,g) efficiency 2-3 times larger

EXTRA SLIDES LONG VERSION

MC Results of (n,g)/background: i-TED gain with respect to C6D6

Europear

Research Council

erc

MC Results of (n,g)/background: i-TED gain with respect to C6D6

Europea

MC Results of (n,g)/background: i-TED gain with respect to C6D6

MC Results of (n,g)/background: i-TED gain with respect to C6D6

Europea

MC Results of (n,g)/background: i-TED gain with respect to C6D6

Europea

MC Results of (n,g)/background: i-TED gain with respect to C6D6

Europear

• Binary classifiers: different ML algorithms

erc Research Council

- Logistic Regression: from sklearn.linear_model import LogisticRegression
- Support Vector Classifier (SVC): from sklearn.svm import SVC
- Gaussian Naive Bayes (NB): from sklearn.naive_bayes import GaussianNB
- Random Forest: from sklearn.ensemble import RandomForestClassifier
- XGBoost Classifier: from xgboost import XGBClassifier

BEST ACCURACY + SIMPLICITY: XGB

• Keras (neural network): from tensorflow.keras.models import Sequential

ML-based capture/background discrimination in a nutshell

ML-based (n,g)/background discrimination: results XGB

IDEAL CRT (MC TIME): BEST SCENARIO

European

erc Research Council

DELTA_T NOT INCLUDED: WORST SCENARIO

VERY PROMISING RESULTS:

- Background reduced to **26-37%** of the original level
- Capture efficiency kept high: 63-74% of events
- **Experimental situation** between both results: Depends on CRT but also on the scatter-absorber and detector-sample distance

Imaging i-TED: (n,g) & background

European

ML training: (n,g) and background

nTOF

Results ML classifier: Au-197(n,g)

• ML (n,g)/background (n,g)/bckg discrimination applied to Au-197(n,g)

Au-197: ML provides high (n,g) eff. but background is already low \rightarrow Fe-56 better to check (n,g)/background gain

BACK-UP SLIDES

MC simulations i-TED 4π

- Improved existing Geant4 application for the response of the full i-TED:
 - Detailed geometry of i-TED 5 @ IFIC-lab
 - Simulation Read-out extended to four independent detectors
- New simulation read-out to include:
 - Flexible number of i-TED Modules: 1-4
 - Output: root file with same structure than experimental data (Same imaging codes!)
 - For each event: Egamma, E1, E2, r1,r2, t1, t2, CoincidenceFlag

MC Simulation: Background i-TED 5.3

- Background spectra for the MC simulations obtained from i-TED 5.3 @ EAR1
- Different samples with large neutron scattering: very similar Edep spectra & TOF spectra → Spectrum has the same origin for all the samples
- Studied the impact of i-TED intrinsic neutron sensitivity → Negligible!

MC Simulation: Background i-TED 5.3

Geant4

Background

sphere R = 0.5 m

- Background spectra for the MC simulations obtained from i-TED 5.3 @ EAR1
- Different samples with large neutron scattering: very similar Edep spectra & TOF spectra → Spectrum has the same origin for all the samples
- Studied the impact of i-TED intrinsic neutron sensitivity \rightarrow Negligible!
- Conclusion: Spectra representative of extrinsic background in EAR1

i-TED vs C6D6 : (n,g) and activity

C6D6 @ 10 cm vs i-TED: (n,g) Efficiencies

		Goant 4: officiency 1x Bieron		
	THRESHOLD	Au-197(n,g)	Pu-242(n,g)	100 mm
	100 keV	3.6%	4.5%	
	150 keV	3.1%	3.6%	 3.1 - 3.5 % (thr = 150 keV)
2	250 keV	2.5%	2.7%	• 2.5 - 2.7% (thr = 250 keV)

1 C6D6 @ 100 mm (250 keV Threshold) 1 x I-TED at 100 mm 1x I-TED at 50				Einel officiencies and
Efficiency (n,g)	2.60%	0.20%	0.68%	Final efficiencies and
PbSe activity C. Rate (c/s)	3.04E+04	2.55E+03	8.01E+03	activity rates for C6D6
PbSe activity C. Rate with cuts	-	1.50E+03	4.52E+03	and i-TED

Eff ratio C6D6/i-TED: Scatterer Singles ~ C6D6

Coincidences A & S x13 if same distance x4 if i-TED @ 50 mm

Results (n,g)/bckg discrimination ML algorithms

• Binary classifiers: different ML algorithms

erc Research Council

- Logistic Regression: from sklearn.linear_model import LogisticRegression
- Support Vector Classifier (SVC): from sklearn.svm import SVC
- Gaussian Naive Bayes (NB): from sklearn.naive_bayes import GaussianNB
- Random Forest: from sklearn.ensemble import RandomForestClassifier
- XGBoost Classifier: from xgboost import XGBClassifier

BEST ACCURACY + SIMPLICITY: XGB

• Keras (neural network): from tensorflow.keras.models import Sequential

Extreme Gradient Boosting or XGBoost

- Supervised Machine-learning algorithm
- **Goal**: predict a target variable Y given a set of features Xi.
- How: Combines several weak learners into a strong learner to provide a more accurate & generalizable ML model.
- Multiple applications: build a regression, binary classification or multi-class classification model.
- **Procedure:** Iterative technique known as boosting that builds a number of decision trees one after the other while focusing on accurately predicting those data points that were not accurately predicted in the previous tree.

ML bckg rejection

ML background rejection: XGB vs Keras

Bckg rejection XGB: impact delta_

NOW: Realistic resolutions

