MC simulations of i-TED 4π & background rejection studies

V. Babiano, J. Balibrea, L. Caballero, D. Calvo, C. Domingo-Pardo, I. Ladarescu, J. Lerendegui-Marco, J.L. Taín (IFIC)
C. Guerrero, J.M. Quesada (US)
F. Calviño, A. Casanovas, A. Tarifeño-Saldivia (UPC)
The n_TOF Collaboration
Outline

- Introduction to i-TED and motivation

- MC simulation of i-TED: capture and background events
 - i-TED Response to (n,g) and background
 - Imaging of (n,g) and background

- Background rejection based on MC simulations
 - Analytical imaging cuts: the λ parameter
 - (n,g)/background gain: i-TED vs C6D6
 - ML-based vs analytical background rejection

- ML-based background rejection with i-TED 5.3 data

- Summary
Motivation

- **i-TED Concept:** Combine TED & Compton imaging to reduce extrinsic neutron background

- **Plans for final i-TED-4pi**
 - Under development but not yet commissioned @ n_TOF → no experimental data of final detector
 - Commissioning and Se-79\(\text{n},\text{g}\) measurement in 2021/22
Motivation

- **i-TED Concept:** Combine TED & Compton imaging to reduce extrinsic neutron background

- **Plans for final i-TED-4pi**
 - Under development but not yet commissioned @ n_TOF → no experimental data of final detector
 - Commissioning and Se-79(n,g) measurement in 2021/22

- **Goal MC simulations:**
 - Optimization of crystal thickness, S-A distance,..
 - Counting rate estimates for Se-79(n,g)
 - Optimization of imaging and background rejection
 - Study of impact of experimental effects (resolution, backscattering, summing,...)
 - Understand results i-TED 5.3 commissioning @ n_TOF and i-TED5 @ IFIC-Lab
i-TED Concept: Combine TED & Compton imaging to reduce extrinsic neutron background

Plans for final i-TED-4pi
- Under development but not yet commissioned at n_TOF → no experimental data of final detector
- Commissioning and Se-79(n,g) measurement in 2021/22

Goal MC simulations:
- Optimization of crystal thickness, S-A distance,..
- Counting rate estimates for Se-79(n,g)
- **Optimization of imaging and background rejection**
- Study of impact of experimental effects (resolution, backscattering, summing,...)
- Understand results i-TED 5.3 commissioning at n_TOF and i-TED5 @ IFIC-Lab
MC simulations of (n,g) and background events
MC simulations for capture/background discrimination

- CAPTURE:
 - CAPTUGEN Au-197(n,g)

- EXTRINSIC BACKGROUND
 - Experimental data
 - i-TED 5.3 Prototype (2018)
 - (DETAILS IN BACK-UP)

Neutron induced background

Capture event
MC i-TED: Response(n,g) & background

i-TED-5 MC response to (n,g) and background: Singles & coincidences

CAPTURE: Au-197(n,g) (Captugen) BACKGROUND: Exp. i-TED 5.3 @ EAR1

Absorber more affected by extrinsic background from walls + it shields the scatterer

Coincidences (A & S) reduce more strongly the background →

→ Improved capture/background ratio before imaging
MC i-TED: imaging \((n,g)\) & background

CAPTURE: Reconstructed emission point for \((n,g)\) events in the sample

BACKGROUND: Reconstructed emission point for background from the walls

A LARGE FRACTION OF CAPTURE SELECTED

MOST OF THE BACKGROUND REJECTED

i-TED IMAGING OPTIMIZATION: Keep \((n,g)\) efficiency high + Maximum \((n,g)/\text{background}\) gain factor
Background rejection based on MC: Imaging and ML algorithms
Imaging cuts using i-TED MC

- Background rejection with imaging cuts: the λ parameter

Low λ values: γ-rays fulfill the intersection condition between the compton cone and the sample

λ distribution for capture and background (MC)

\[
\lambda = \left(n_x a_x + n_y a_y + n_z a_z \right)^2 - \left(1 + \frac{511}{E_1 + E_2} - \frac{511}{E_2} \right)^2 \left(a_x^2 + a_y^2 + a_z^2 \right)
\]
Imaging cuts using i-TED MC

- Background rejection with imaging cuts: the λ parameter

Low λ values: γ-rays fulfill the intersection condition between the Compton cone and the sample

λ distribution for capture and background (MC)

![Graph showing λ distribution for capture and background.]

λ IMAGING CUT

Difference between (n,g) and background at Low λ

Clear background rejection with $\lambda<500-1000$
(n,g)/background: i-TED vs C6D6

MC Results of (n,g)/background: i-TED gain with respect to C6D6

i-TED (n,g)/background gain vs. C6D6:

A) Coincidences crystals: Factor 1.5 – 3 (*)

A) Imaging: Cuts in λ parameter

Best gain factors (n, γ)/bckg ratio wrt to C6D6

Values with no imaging cut

TOTAL (n,g)/background gain with IMAGING

i-TED gain factor x 4 - 10

with respect to a C6D6 @ 10 cm

(depending of the sample - i-TED distance)

Cost of THE IMAGING CUTS

(n,g) efficiency reduced to a 20-40%

(for reasonable lambda cuts λ<500-1000)

(*) DETAILS IN BACK-UP
Background rejection based on MC: ML algorithms vs analytic
ML-based (n,g)/bckg discrimination in a nutshell

- i-TED MC EVENTS: E1, E2, p1, p2, (t2-t1)
- ½ CAPTURE
- ½ BACKGROUND

TRAIN ML-ALGORITHM
XGBoost BINARY CLASSIFIER
(70-80% MC events)

TEST THE ML-ALGORITHM
(Remaining 20-30% MC events)
ML-based (n,g)/bckg discrimination

- ML-based capture/background discrimination in a nutshell

i-TED MC EVENTS: E1, E2, p1, p2, (t2-t1)

½ CAPTURE

TRAIN ML-ALGORITHM
XGBoost BINARY CLASSIFIER
(70-80% MC events)

½ BACKGROUND

TEST THE ML-ALGORITHM
(Remaining 20-30% MC events)

RESULT: CONFUSION MATRIX

FOMs

(n,g) efficiency = True positive

(n,g)/background gain factor = True positive/False Negative

RESULT WITH IDEAL CRT (MC TIME)
ML-based \((n,g)/bckg\) discrimination

- **ML-based capture/background discrimination in a nutshell**

 i-TED MC EVENTS: \(E_1, E_2, p_1, p_2, (t_2-t_1)\)

 \[\frac{1}{2} \text{ CAPTURE} \rightarrow \frac{1}{2} \text{ BACKGROUND}\]

 TRAIN ML-ALGORITHM
 - XGBoost BINARY CLASSIFIER
 - (70-80% MC events)

 TEST THE ML-ALGORITHM
 - (Remaining 20-30 % MC events)

RESULT: CONFUSION MATRIX

- **FOMs**
 - \((n,g)\) efficiency = True positive
 - \((n,g)/\)background gain factor = True positive/False Negative

RESULT WITH IDEAL CRT (MC TIME)

Very promising results

NEXT: compare to imaging cuts
ML-algorithms vs imaging cut (λ)

CAPTURE/BACKGROUND GAIN FACTOR:

ML (DOTTED) vs λ Cut (SOLID)

- ML (XGB) max: 2.8
- ML (XGB) min: 1.7

FOM#1:

\[(n,g)/\text{background gain factor} \sim \lambda \text{ Cut} < 300-500\]

(*) Details in the back-up
ML-algorithms vs imaging cut (λ)

CAPTURE/BACKGROUND GAIN FACTOR:
- ML (DOTTED) vs λ Cut (SOLID)

FOM #1:
- \((n,g)/\text{background gain factor}\)
- ML (n,g)/bckg gain factor $\sim \lambda$ Cut $<300-500$

CAPTURE EFFICIENCY:
- ML (DOTTED) vs λ Cut (SOLID)

FOM #2:
- \((n,g)\) efficiency
- Same \((n,g)/\text{background gain factor}\)
- Efficiency ML is x 2-3 LARGER
Background rejection studies based on i-TED 5.3 data
Results ML classifier: Au-197(n,g)

- ML (n,g)/background (n,g)/bckg classifier: results for Au-197(n,g)

1) Capture efficiency (4.9 eV res)
 - ML (XGB): 80%
 - Analytical $\lambda < 1000$: 34%

2) Peak-to-valley gain factor
 - ML (XGB): 1.24
 - Imaging $\lambda < 1000$: 1.14

Au-197: ML provides high (n,g) eff. but background is already low \rightarrow Fe-56 better to check (n,g)/background gain
Results ML classifier: Fe-56(n,g)

- ML (n,g)/background (n,g)/bckg classifier: results for Fe-56(n,g)

ML (XGB) training: Exp. Data i-TED prototype (2018)
Fe-56 (1.15 keV) (capture) + Carbon (background)

1) Capture efficiency (1.15 keV res)
 - **ML (XGB)**: 80%
 - Imaging $\lambda<1000$: 32%

2) Peak-to-valley gain factor at 1.15 keV
 - **ML (XGB)**: 1.80
 - Imaging $\lambda<1000$: 1.20

Preliminary
Summary

- **i-TED**: Imaging techniques to suppress the neutron induced background

- **Final i-TED 4pi** under development and MC simulations are key at this point
 - Optimization of the (n,g)/background discrimination capabilities
 - Realistic capture and background events

- **Results of (n,g)/background gain factor based on MC**
 - Coincidences + Analytical imaging cuts: i-TED gain factor 4-10 wrt C6D6
 - ML algorithms (XGB) promising: Similar background rejection + x2 (n,g) efficiency

- **ML background rejection with i-TED 5.3 data** (commissioning 2018 EAR1):
 - Training and tested with exp data (Au-197 and Fe-56) → Preliminary results
 - Background rejection equal or better than imaging cuts but
 - (n,g) efficiency 2-3 times larger
MC Simulation: background rejection

- MC study of capture/background discrimination
- Capture events: \textit{Au-197(n,g)} as a reference
 - Captugen + Geant4 PrimaryGenerator
- Neutron induced Background:
 - Full simulation: Time-cost + (probably) non-realistic
 - Experimental data measured @ EAR1 with i-TED 5.3: easy and realistic

\begin{itemize}
 \item CAPTUGEN Au-197(n,g)
 \item Geant4 Application i-TED 4pi
 \item Experimental background i-TED 5.3
 \item Output with same structure than exp data
 \item Capture/background discrimination
 \item Analytical Imaging cuts ML-algorithms
\end{itemize}
MC Results of (n,g)/background: i-TED gain with respect to C6D6

(n,g)/background gain BEFORE IMAGING

Scatterer alone similar to C6D6

Gain #1: Coincidences Absorber & Scatter

Gain #2: good CRT & only events with t1<t2

(under study)

Gain (n,g)/background wrt C6D6: x 1.5 - 3
MC Results of (n,g)/background: i-TED gain with respect to C6D6

- Scatterer alone similar to C6D6
- Gain #1: Coincidences Absorber & Scatter
- Gain #2: good CRT & only events with t1<t2 (under study)
- Gain (n,g)/background wrt C6D6: x 1.5 - 3

Why Background rejection with t1<t2?
MC Results of (n,g)/background: i-TED gain with respect to C6D6

Why Background rejection with t1<t2?

Gain (n,g)/background wrt C6D6: x 1.5 - 3

- **(n,g)/background gain BEFORE IMAGING**
 - Scatterer alone similar to C6D6
 - Gain #1: Coincidences Absorber & Scatter
 - Gain #2: good CRT & only events with t1<t2 (under study)

Background event:
- t1<t2

Graph:
- Scatterer
- Absorber
- Coincidences
- Coincidences & t1<t2
- C6D6 @ 100 mm

Energy Diagram:
- E1, r1, t1
- E2, r2, t2
- Background event: t1<t2
MC Results of \((n,g)/\text{background}\): i-TED gain with respect to C6D6

Why Background rejection with \(t_1 < t_2\)?

\((n,g)/\text{background}\) gain BEFORE IMAGING

- Scatterer alone similar to C6D6
- Gain #1: Coincidences Absorber & Scatter
- Gain #2: good CRT & only events with \(t_1 < t_2\) (under study)

Gain \((n,g)/\text{background}\) wrt C6D6: \(x 1.5 - 3\)
MC Results of \((n,g)/\text{background}\): i-TED gain with respect to C6D6

\((n,g)/\text{background}\) gain BEFORE IMAGING

- Scatterer alone similar to C6D6
- Gain #1: Coincidences Absorber & Scatter
- Gain #2: good CRT & only events with \(t_1 < t_2\)

Gain \((n,g)/\text{background}\) wrt C6D6: \(x \ 1.5 - 3\)

Why Background rejection with \(t_1 < t_2\)?

GOOD CRT RELEVANT
MC Results of \((n,g)/\text{background}\) gain with respect to C6D6

\(\text{(n,g)/background gain BEFORE IMAGING)\)
- Scatterer alone similar to C6D6
- Gain #1: Coincidences Absorber & Scatter
- Gain #2: good CRT & only events with \(t_1<t_2\)
 (under study)
- Gain \((n,g)/\text{background wrt C6D6}\) : x 1.5 - 3

\(\text{TOTAL (n,g)/background gain with IMAGING)\)
- i-TED gains a factor x 4 - 10 with respect to a C6D6 @ 10 cm
 depending of the sample - i-TED distance
 (Gain related to CRT not included)
ML-based (n,g)/bckg discrimination

- **Binary classifiers: different ML algorithms**
 - Logistic Regression: `from sklearn.linear_model import LogisticRegression`
 - Support Vector Classifier (SVC): `from sklearn.svm import SVC`
 - Gaussian Naive Bayes (NB): `from sklearn.naive_bayes import GaussianNB`
 - Random Forest: `from sklearn.ensemble import RandomForestClassifier`
 - **XGBoost Classifier**: `from xgboost import XGBClassifier`
 - Keras (neural network): `from tensorflow.keras.models import Sequential`

 BEST ACCURACY + SIMPLICITY: XGB
ML-based (n,g)/bckg discrimination

- ML-based capture/background discrimination in a nutshell

i-TED MC EVENTS: 9 variables!
Assign a binary flag

1 = CAPTURE
0 = BACKGROUND

MC + EXP EFFECTS
Energy, Time, Position resolution

TRAIN ML-ALGORITHM
BINARY CLASSIFIER
BALANCED N0 EVENTS

RESULT: CONFUSION MATRIX

(n,g) efficiency (fraction) = True positive

(n,g)/background gain factor = True positive/False Negative

TEST THE ML-ALGORITHM
(Remaining 20-30% MC events)
ML-based (n,g)/background discrimination: results XGB

IDEAL CRT (MC TIME):
BEST SCENARIO

DELTA_T NOT INCLUDED:
WORST SCENARIO

VERY PROMISING RESULTS:
- Background reduced to 26-37% of the original level
- Capture efficiency kept high: 63-74% of events
- Experimental situation between both results: Depends on CRT but also on the scatter-absorber and detector-sample distance
Imaging i-TED: (n,g) & background

CAPTURE: Reconstructed emission point for (n,g) events in the sample

Most of the reconstructed events concentrated around the sample position.

BACKGROUND: Reconstructed emission point for background from the walls

The distribution is much flatter with a broader maximum.
ML-algorithms vs imaging cut (λ)

TAKE HOME MESSAGE:
Background rejection based in MC events shows very promising results for ML-Algorithms

- High rejection of background
- Larger (n,g) efficiency than imaging cuts

MOTIVATES:
Test ML-algorithms using exp. Data i-TED 5.3 (prototype commissioning (2018))
(V. Babiano’s talk for more details)
ML training: \((n,g)\) and background

CAPTURE: Au-197\((n,g)\)/Fe-56\((n,g)\)

i-TED 5.3 @ EAR1

BACKGROUND: Pb/C with i-TED 5.3 @ EAR1: Full spectrum

SAME ML ALGORITHM: **XGBoost** (Best performance in MC-based study)

Same training/testing procedure but replacing the MC input with exp. data
Results ML classifier: Au-197(n,g)

- ML (n,g)/background (n,g)/bckg discrimination applied to Au-197(n,g)

ML (XGB) training:
Au-197 (capture) + Pb (background)

Results of the ML-Classifier on Au-197(n,g)

1) Capture efficiency (4.9 eV res)
 ML (XGB): 80%
 Imaging λ<1000: 34%

1) Peak-to-valley gain factor
 ML (XGB): 1.24
 Imaging λ<1000: 1.14

Au-197: ML provides high (n,g) eff. but background is already low → Fe-56 better to check (n,g)/background gain
MC simulations i-TED 4π

- **Improved existing Geant4 application** for the response of the full i-TED:
 - Detailed geometry of i-TED 5 @ IFIC-lab
 - Simulation Read-out extended to four independent detectors

- **New simulation read-out** to include:
 - Flexible number of i-TED Modules: 1-4
 - Output: root file with same structure than experimental data (Same imaging codes!)
 - For each event: Egamma, E1, E2, r1,r2, t1, t2 , CoincidenceFlag

i-TED 5 (each of the modules)
Background spectra for the MC simulations obtained from i-TED 5.3 @ EAR1

Different samples with large neutron scattering: very similar Edep spectra & TOF spectra → Spectrum has the same origin for all the samples

Studied the impact of i-TED intrinsic neutron sensitivity → Negligible!
Background spectra for the MC simulations obtained from \textit{i-TED 5.3 @ EAR1}.

Different samples with large neutron scattering: very similar Edep spectra & TOF spectra \rightarrow Spectrum has the same origin for all the samples.

Studied the impact of i-TED intrinsic neutron sensitivity \rightarrow Negligible!

Conclusion: Spectra representative of extrinsic background in EAR1.

GOAL: Obtain realistic Background due to scattered neutrons.
i-TED vs C6D6: (n,g) and activity

C6D6 @ 10 cm vs i-TED: (n,g) Efficiencies

<table>
<thead>
<tr>
<th>Threshold</th>
<th>Au-197(n,g)</th>
<th>Pu-242(n,g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 keV</td>
<td>3.6%</td>
<td>4.5%</td>
</tr>
<tr>
<td>150 keV</td>
<td>3.1%</td>
<td>3.6%</td>
</tr>
<tr>
<td>250 keV</td>
<td>2.5%</td>
<td>2.7%</td>
</tr>
</tbody>
</table>

Geant4: efficiency 1x Bicron@100 mm:
- 3.1 - 3.5% (thr = 150 keV)
- 2.5 - 2.7% (thr = 250 keV)

Final efficiencies and activity rates for C6D6 and i-TED

Eff ratio C6D6/i-TED: Scatterer Singles ~ C6D6

C6D6/i-TED (n,g) 13.0
C6D6/i-TED activity C Rate 12.0
C6D6/i-TED @ 100 mm and i-TED @ 50 mm
C6D6/i-TED (n,g) 4
C6D6/i-TED activity C Rate 3.8
C6D6/i-TED activity w/ cuts 6.7

x13 if same distance
x4 if i-TED @ 50 mm
Results (n,g)/bckg discrimination
ML algorithms
ML-based \((n,g)/bckg\) discrimination

- **Binary classifiers: different ML algorithms**
 - **Logistic Regression**: `from sklearn.linear_model import LogisticRegression`
 - **Support Vector Classifier (SVC)**: `from sklearn.svm import SVC`
 - **Gaussian Naive Bayes (NB)**: `from sklearn.naive_bayes import GaussianNB`
 - **Random Forest**: `from sklearn.ensemble import RandomForestClassifier`
 - **XGBoost Classifier**: `from xgboost import XGBClassifier`
 - **Keras (neural network)**: `from tensorflow.keras.models import Sequential`

BEST ACCURACY + SIMPLICITY: XGB
Extreme Gradient Boosting or XGBoost

• Supervised Machine-learning algorithm
• **Goal**: predict a target variable Y given a set of features – Xi.
• **How**: Combines several weak learners into a strong learner to provide a more accurate & generalizable ML model.
• **Multiple applications**: build a regression, **binary classification** or multi-class classification model.
• **Procedure**: Iterative technique known as boosting that builds a number of decision trees one after the other while focusing on accurately predicting those data points that were not accurately predicted in the previous tree.

Example of parameter optimization

BEST COMBINATION:
- learning_rate = 0.1
- N_estimators = 150-200
ML bckg rejection

Random Forest

Naive Bayes

SVC

SVC + RBF kernel

Linear Regression

K-nearest neighbors

XGB (default)

XGB (120 trees, depth 8, subsample 0.7)
ML background rejection: XGB vs Keras

No delta T
WITH exp. Effects + THR
XGB: 63.13%
KERAS: 62.89%

WITH delta T,
WITH EXP. EFFECTS + THR
XGB: 73.98%
KERAS: 74.32%

v2) Removed 1 intermediate 50 neurons layer
Bckg rejection XGB: impact delta ΔT

NOW: Realistic resolutions

- **200 ps: 70.98%**
 - XGB (Exp Effects + Thr)
 - Background: 0.7, Predicted: 0.3
 - Capture: 0.28, Predicted: 0.72

- **400 ps: 66.94%**
 - XGB (Exp Effects + Thr)
 - Background: 0.67, Predicted: 0.33
 - Capture: 0.33, Predicted: 0.67

- **600 ps: 65.10%**
 - XGB (Exp Effects + Thr)
 - Background: 0.65, Predicted: 0.35
 - Capture: 0.35, Predicted: 0.65

- **800 ps: 64.26%**
 - XGB (Exp Effects + Thr)
 - Background: 0.65, Predicted: 0.35
 - Capture: 0.36, Predicted: 0.64

- **1000 ps: 63.95%**
 - XGB (Exp Effects + Thr)
 - Background: 0.64, Predicted: 0.36
 - Capture: 0.36, Predicted: 0.64

- **1200 ps: 63.91%**
 - XGB (Exp Effects + Thr)
 - Background: 0.64, Predicted: 0.36
 - Capture: 0.37, Predicted: 0.63