

Status update on the analysis of ⁸⁰Se(n,g), ⁵⁶Fe(n,g) & ⁹³Nb(n,g)

Víctor Babiano Suárez

Luis Caballero, David Calvo, Cesar Domingo, Ion Ladarescu, Pablo Olleros, José Luis Taín IFIC (Universitat de València – CSIC)

Francisco Calviño, Adria Casanovas, Ariel Tarifeño (UPC)

Victor Alcayne (CIEMAT)

Carlos Guerrero, Mª Ángeles Millán, Mª Teresa Rodríguez (US)

n_TOF local team and the n_TOF Collaboration

added

⁸⁰Se(n,g)

Analysis Meeting nTOF - Geneve 2019

Run Number

Ratios SiMon#i/C6D6#1

Ratios SiMon#i/C6D6#1

⁸⁰Se(n,g)

Analysis Meeting nTOF - Geneve 2019

Ratios SiMon#i/C6D6#1

Analysis Meeting nTOF - Geneve 2019

⁸⁰Se(n,g)

Ratios SiMon#i/C6D6#2

Ratios SiMon#i/C6D6#3

⁸⁰Se(n,g)

Ratios SiMon#i/C6D6#4

⁸⁰Se(n,g)

Detectors count rate consiste 30000 < Amp (ch) < 45000

1e6 < tof (ns) < 1e8

- All SiMons added

Analysis Meeting nTOF - Geneve 2019

⁸⁰Se(n,g)

Analysis Meeting nTOF - Geneve 2019

- Summary of ⁸⁰Se(n,g) experiment at EAR 1

Sample	Total	Good	%	
Au	2.136e17	2.136e17	100	
Empty	1.512e17 1.512e17		100	
Empty + Filters	3.579e17	3.579e17	100	
Se Thick	1.732e18	1.732e18	100	
Se Thick + F	1.109e17	1.109e17	100	
Se Thin	9.618e16	9.618e16	100	

i-TED Commissioning ⁵⁶Fe(n,g) @ EAR 1

⁵⁶Fe(n,g)

⁵⁶Fe(n,g)

⁵⁶Fe(n,g)

Ratios SiMon#i/C6D6#1

⁵⁶Fe(n,g)

- Summary of ⁵⁶Fe(n,g) experiment at EAR 1 under i-TED Commissioning framework.

Sample	Total	Good	%
Au	7.5e16	7.21e16	96
Fe	1.14e18	1.14e18	100
Pb	2.37e17	2.13e17	90
Empty	3.05e17	3.05e17	100

i-TED Commissioning ⁹³Nb(n,g) @ EAR2

⁹³Nb(n,g)

⁹³Nb(n,g)

Analysis Meeting nTOF - Geneve 2019

⁹³Nb(n,g)

Analysis Meeting nTOF - Geneve 2019

- Summary of ⁹³Nb(n,g) experiment at EAR 2 under i-TED Commissioning framework.

Sample	Total	Good	%	
Au	2.117e17	2.117e17	100	
Fe	5.32e17	5.32e17	100	
Nb	3.96e17	3.629e17	92	
Pb	3.36e16	3.36e16	100	
Empty	1.714e16	1.714e16	100	

⁸⁰Se(n,g), ⁵⁶Fe(n,g) & ⁹³Nb(n,g) experiments C6D6 summary & outlook

- The CR consistency for the three measurements 56Fe(n,g), 80Se(n,g) and 93Nb(n,g) has been checked and data affected by artifacts have been removed.
- Between 90% and 100% of the data taken has been validated for further analysis
- Next steps include the following:
 - **MC simulations** and WF calculation.
 - Background subtraction.
 - **R-Matrix analysis** with SAMMY

Sample	%
Se	100
Nb	92
Fe	100
Au	99
Pb	91
Empty	100

i-TED5.3@EAR1 ⁵⁶Fe(n,g)

i-TED2@EAR2 ⁹³Nb(n,g)

Previous status of the data analysis (Granada, 2018) \rightarrow Spatial reconstruction algorithms & characterization

$$L(\vec{r}) \approx \frac{L_0}{(\vec{r} - \vec{r_0})^2} \alpha e^{-\alpha |\vec{r} - \vec{r_0}|} + \tau, \ \vec{r} \neq \vec{r_0}$$

Id

• From raw data (list of t,qdc,pixel#) build spatial distributions, time-distributions and energy distributions

T	ime stamp	Charge	С	har	nel
	837615521118 837615521840 837615520438 837615527030 837615531328 837615530384 837615520717 837615522303 837615522303	39.307793 22.796192 47.001202 17.206005 27.408051 18.038380 20.365070 20.798695 24.875397		314 269 290 291 308 296 270 272 299	
	837615521134 837615523235 837615521819 837615526312 837615529199 837615525392 837615521990 837615526946	40.175247 31.679199 24.025505 29.457375 17.035973 31.773796 33.147594 28.818348		305 300 257 319 293 303 311 313	

• From raw data (list of t,qdc,pixel#) build spatial distributions, time-distributions and energy distributions

Time stamp Charge 837615521118 39.307793 837615521840 22.796192 837615520438 47.001202 837615527030 17.206005 27.408051 837615531328 18.038380 837615530384 837615520717 20.365070 837615522303 20.798695 837615525991 24.875397 40.175247 837615521134 31.679199 837615523235 837615521819 24.025505 29.457375 837615526312 17.035973 837615529199 31.773796 837615525392 33.147594 837615521990

837615526946

Chan	nel Id
314	

269

290

291

308

296

270

272

299

305

300

257

319

293

303

311

313

28.818348

proc 37	essing 41	event 38	5555 50	1140 58	62	43	39
33							35
40							61
46				55			53
8	14		16	17			
6							9
31							29
25							27

• From raw data (list of t,qdc,pixel#) build spatial distributions, time-distributions and energy distributions

• From raw data (list of t,qdc,pixel#) build spatial distributions, time-distributions and energy distributions

building?

qdc time-integration window for event

Charge Channel Id

28.818348

313

Time stamp

837615526946

Analysis Meeting n	TOF - Geneve 2019

• Attending to the **neutron energy** of the **SCATTERER**:

Analysis Meeting nTOF - Geneve 2019

• Attending to the **neutron energy** of the **SCATTERER**:

Analysis Meeting nTOF - Geneve 2019

• Attending to the **deposited energy** of the **SCATTERER**:

Analysis Meeting nTOF - Geneve 2019

• Attending to the **deposited energy** of the **SCATTERER**:

Analysis Meeting nTOF - Geneve 2019

i-TED COINCIDENCE Event Building

OUTLOOK

- We need to decide which is the
 best **delta time** value to create
 the time-**coincidence** events
 between scatter- and
 absorber-detector.
- This quantity will be determined taking into account the resolution of the **Compton images**.

SUMMARY

- A systematic study has been carried out with the aim of find the best event-building delta time with i-TED detector.
- For both detectors, the **100 150 ns** interval between seems to provide consistent results in terms of En-spectrum and deposited-energy spectra.
- These quantities are comparable with the decay time of the LaCl₃(Ce) scintillator crystals.