A new C6D6 detector with SiPM readout

V. Babiano, L. Caballero, <u>C. Domingo-Pardo</u>, I. Ladarescu, J.L. Taín (IFIC)
C. Guerrero, J. Lerendegui-Marco, J.M.Quesada (US)
F. Calviño, A. Casanovas, A. Tarifeño-Saldivia (UPC)
The n_TOF Collaboration

- Brief evolution of the C6D6 zoo @ n_TOF
- Objectives of a new C6D6 design
 - Neutron sensitivity
 - Electrical signal response
 - B-field insensitivity
- Pros- and cons of the new design
- Proposed prototype development and tests

Brief evolution of C6D6 detectors at n_TOF:

2000

2009-2012

2015-2018

time

- → Further **reduce the intrinsic Neutron Sensitivity** (compared to state-of-the-art C6D6)
- \rightarrow Better suited for high CRs and γ-flash (EAR2) by reducing volume (1/4 L6D6) \rightarrow Better suited for high En-range
- \rightarrow Clean electrical output signals (no VDs \rightarrow no rebounds \rightarrow To be tested in the lab during LS2) \rightarrow Reliable PSA
- \rightarrow Fast response, comparable or better than PMTs \rightarrow Well suited for neutron-TOF
- → By construction, **insensitive to B-fields** (unlike PMTs), no need for mu-metal
- \rightarrow Low voltage supply (+30V bias, may even think of battery powered detectors for reducing noise loops)

→ Further reduce the intrinsic Neutron Sensitivity (compared to state-of-the-art C6D6)

- \rightarrow Better suited for high CRs and γ -flash (EAR2) by reducing volume (1/4 L6D6) \rightarrow Better suited for high En-range
- \rightarrow Clean electrical output signals (no VDs \rightarrow no rebounds \rightarrow To be tested in the lab during LS2) \rightarrow Reliable PSA
- \rightarrow Fast response, comparable or better than PMTs \rightarrow Well suited for neutron-TOF
- → By construction, **insensitive to B-fields** (unlike PMTs), no need for mu-metal
- → Low voltage supply (+30V bias, may even think of battery powered detectors for reducing noise loops)

R.Plag et al. Nucl. Instr. Meth. A 496, Issue 2, p. 425-436 (2004).

L6D6 Response to Neutrons (C. Guerrero & J.Lerendegui-Marco, US):

N_TOF Collaboration Meeting, 7 October 2014

► Low Sensitivity:

- ➤ 20h-Long simulations , 10⁸ neutrons
- Maximized geometrical efficiency:

 2π emitting source at <1mm from detector

L6D6 Response to Neutrons (C. Guerrero & J.Lerendegui-Marco, US):

> Analysis of main contributions to neutron sensitivity of the L6D6 :

PMT is main contributor (E< 500keV)

CF main cotribution at ~2.2 MeV

→ Thus, avoiding PMT (thereby reducing also total amount of CF) should help to reduce NS further down(!)

→ Further **reduce the intrinsic Neutron Sensitivity** (compared to state-of-the-art C6D6)

 \rightarrow Better suited for high CRs and γ-flash (EAR2) by reducing volume (1/4 L6D6) \rightarrow Better suited for high En-range

 \rightarrow Clean electrical output signals (no VDs \rightarrow no rebounds \rightarrow To be tested in the lab during LS2) \rightarrow Reliable PSA

 \rightarrow Fast response, comparable or better than PMTs \rightarrow Well suited for neutron-TOF

→ By construction, **insensitive to B-fields** (unlike PMTs), no need for mu-metal

→ Low voltage supply (+30V bias, may even think of battery powered detectors for reducing noise loops)

C6D6/PMT response: affected by artifacts (rebounds) probably arising from PMT's Voltage Divider:

TIT

-HV

C1

→ Aspect 2: ringing and rebounds produce a "dirty" electrical response

→ Further **reduce the intrinsic Neutron Sensitivity** (compared to state-of-the-art C6D6)

 \rightarrow Better suited for high CRs and γ-flash (EAR2) by reducing volume (1/4 L6D6) \rightarrow Better suited for high En-range

 \rightarrow Clean electrical output signals (no VDs \rightarrow no rebounds \rightarrow To be tested in the lab during LS2) \rightarrow Reliable PSA

 \rightarrow Fast response, comparable or better than PMTs \rightarrow Well suited for neutron-TOF

→ By construction, **insensitive to B-fields** (unlike PMTs), no need for mu-metal

→ Low voltage supply (+30V bias, may even think of battery powered detectors for reducing noise loops)

C6D6/PMT B-field sensitivity: can we avoid it?

→ Aspect 3: mu-metal & magnetic fields screening

From conventional C6D6/PMT towards C6D6/SiPM: the proposal to develop a new C6D6

- \rightarrow Aspect 1: "dirty" signal response
- \rightarrow Aspect 2: neutron sensitivity (PMT)
- → Aspect 3: B-field sensitivity (mu-metal)

Replace PMT+VD by SiPM

"Mock" prototype of IFIC-C6D6: i6D6

- → 250 ml C6D6
- → SiPM Sensl 50x50mm²
- → 1/4th of L6D6 volumen (four of these make one L6D6)

Fast Output Pulse Shape MicroFJ-60035-TSV

Pros:

- → Further reduce the intrinsic Neutron Sensitivity (compared to state-of-the-art C6D6)
- \rightarrow Better suited for high CRs and γ-flash (EAR2) by reducing volume (1/4 L6D6) \rightarrow Better suited for high En-range
- \rightarrow Clean electrical output signals (no VDs \rightarrow no rebounds \rightarrow To be tested in the lab during LS2) \rightarrow Reliable PSA
- \rightarrow Fast response, comparable or better than PMTs \rightarrow Well suited for neutron-TOF
- \rightarrow By construction, **insensitive to B-fields** (unlike PMTs), no need for mu-metal
- → Low voltage supply (+30V bias, may even think of battery powered detectors for reducing noise loops)

Cons:

- → Need 4 channel Digitizers per 1L volumen (4 times the # channels than same efficiency with L6D6)
- \rightarrow Needs some development, in particular a customized C6D6 Carbon Fiber cell
- \rightarrow Thermal dependency of the SiPM gain (there are simple solutions)

C6D6/SiPM development: next steps

- \rightarrow **Prototype** replacing Bicron PMT by SiPM and tests with sources (IFIC/CERN) for:
 - \rightarrow gain-stability, resolution, count-rate capability
- \rightarrow Neutron sensitivity study at CNA using n-beam
- \rightarrow Study of the neutron-sensitivity via MC (US/C.Guerrero,J.Lerendegui)

backup stuff

L6D6 Response to Neutrons (C. Guerrero & J.Lerendegui-Marco, US):

➢PMT : empty glass bottle surrounded by a thin Mumetal layer

→ Thus, avoiding PMT (thereby reducing also total amount of CF) should help to reduce NS further down(!)

L6D6 Response to Neutrons (C. Guerrero & J.Lerendegui-Marco, US):

Influence of Al/Carbon Fiber

SiPM vs. PMT in γ-ray detection

Example of energy spectra from Grodzicka et al. 2017 [Nuclear Inst. and Methods in Physics Research, A 874 (2017) 137–148]

J-Series High PDE and Timing Resolution, TSV Package DATASHEET

Sensor Size	Microcell Size	Paramotor	Overvoltage	Min.	Typical	Max.	Units
3mm	20µm		Vbr + 2.5V		9.1x10*		
	35µm	1			2.8x10*		
	20µm	Gain	Vbr + 5.0V		1.7x10*		
	35µm	(anode-cathode)			5.3x10*		
8mm	35µm		Vbr + 2.5V		2.8x10*		
			Vbr + 5.0V		5.3x10*		
3mm	20µm		Vbr + 2.5V	0.2	0.0	0.8	
	35µm					part 1	
	20µm	Dark Current	Vbr + 6.0V	1.1		1.8	μА
	35µm				L. I		
6mm	35µm		Vbr + 2.5V		0.9	1.3	μA
			Vbr + 6.0V		4.1	5.8	μA
3mm	20µm, 35µm	Rise time * - anode-cathode output			100		pa
6mm	35µm				300		ps
3mm	20µm	Mcrocel recharge time			12		na
	35µm				37		ns
Gmm	35µm	CONSIGN -			48		na
3mm	20µm	Capacitance * (anode output)			TEO		pF
	35µm		Vbr + 2.5V		1000		pF
8mm	35wm				4000		pF
3mm	20µm	Cepacitance *	Vbr + 2.6V		TBD		pF
	35µm				60		pF
Gmm	35µm	(fast terminal)			200		pF
	20µm	Fast output pulse width (PWHM)			1.4		na
3mm	35µm				1.4		na
6mm	35µm				3.0		na
3mm	20µm		Vbr + 2.5V		6		96
	35µm				7		96
	20µm	-	Vbr + 5.0V		10		%
	35wm	Crosstalk			22		%
6 mm			Vbr+2.6V		7		96
	35µm		Vbr + 5.0V		22		%
3mm	20µm, 35µm	Atterpulsing	Vbr + 2.5V		0.1		%
	20um 35am		Vbr + 6 OV		10		<u>.</u>
emm	35µm		Vbr + 2.5V		0.1		
			Vbr + 5 OV		10		
Servero	Mum Shum		The second se		1.04		
	Auguri, uogurii	Imperature dependence of Vbr *			<21.5		mWPC

Sens

