Status of C6D6+SiPM developments

V. Babiano, <u>J. Balibrea</u>, L. Caballero, D. Calvo, C. Domingo-Pardo, I. Ladarescu, J. Lerendegui-Marco, J.L. Taín (IFIC)

C. Guerrero, J.M.Quesada (US)

F. Calviño, A. Casanovas, A. Tarifeño-Saldivia (UPC)

The n_TOF Collaboration

- Objectives of a new C6D6 design
 - Neutron sensitivity
 - Electrical signal response
 - B-field insensitivity
- Readout electronics for SiPM and fast signals
- Encapsulation optimization
- Schedule and possible proposals

QUICK SUMMARY

- Further **reduce the intrinsic Neutron Sensitivity** (compared to state-of-the-art C6D6)
- Better suited for high CRs and γ -flash (EAR2) by reducing volume (1/4 L6D6) \rightarrow Better suited for high En-range
- Clean electrical output signals (no VDs \rightarrow no rebounds \rightarrow To be tested in the lab during LS2) \rightarrow **Reliable PSA**
- Fast response, comparable or better than $PMTs \rightarrow Well$ suited for neutron-TOF
- By construction, **insensitive to B-fields** (unlike PMTs), no need for mu-metal
- Low voltage supply (+30V bias, may even think of battery powered detectors for reducing noise loops)

- Further reduce the intrinsic Neutron Sensitivity (compared to state-of-the-art C6D6)
- Better suited for high CRs and γ -flash (EAR2) by reducing volume (1/4 L6D6) \rightarrow Better suited for high En-range
- Clean electrical output signals (no VDs \rightarrow no rebounds \rightarrow To be tested in the lab during LS2) \rightarrow **Reliable PSA**
- Fast response, comparable or better than PMTs \rightarrow Well suited for neutron-TOF
- By construction, insensitive to B-fields (unlike PMTs), no need for mu-metal
- Low voltage supply (+30V bias, may even think of battery powered detectors for reducing noise loops)

Aspect 1: neutron sensitivity

R.Plag et al. Nucl. Instr. Meth. A 496, Issue 2, p. 425-436 (2004).

C6D6/PMT Neutron sensitivity: could it be improved further?

Aspect 1: neutron sensitivity

L6D6 Response to Neutrons (C. Guerrero & J.Lerendegui-Marco, U:

> Analysis of main contributions to neutron sensitivity of the L6D6 :

PMT is main contributor (E< 500keV)

CF main cotribution at ~2.2 MeV

→ Thus, avoiding PMT (thereby reducing also total amount of CF) should help to reduce NS further down(!)

- Further reduce the intrinsic Neutron Sensitivity (compared to state-of-the-art C6D6)
- Better suited for high CRs and γ -flash (EAR2) by reducing volume (1/4 L6D6) \rightarrow Better suited for high En-range
- Clean electrical output signals (no VDs \rightarrow no rebounds \rightarrow To be tested in the lab during LS2) \rightarrow **Reliable PSA**
- Fast response, comparable or better than PMTs \rightarrow Well suited for neutron-TOF
- By construction, insensitive to B-fields (unlike PMTs), no need for mu-metal
- Low voltage supply (+30V bias, may even think of battery powered detectors for reducing noise loops)

C6D6/PMT response: affected by artifacts (rebounds) probably arising from PMT's Voltage Divider:

→ Aspect 2: ringing and rebounds produce a "dirty" electrical response

PMT + Voltage Divider:

Hypothesis: Impedance mismatch issues due to voltage divider

Input from **Lucia Gallego**. After pulse desexcitation:

Meas. Sci. Technol. 7 (1996) 121–135.

J. P. E 10 (1977) Volume 10 1044

NIM A 574 (2007) 121–126

- Further reduce the intrinsic Neutron Sensitivity (compared to state-of-the-art C6D6)
- Better suited for high CRs and γ -flash (EAR2) by reducing volume (1/4 L6D6) \rightarrow Better suited for high En-range
- Clean electrical output signals (no VDs \rightarrow no rebounds \rightarrow To be tested in the lab during LS2) \rightarrow **Reliable PSA**
- Fast response, comparable or better than PMTs \rightarrow Well suited for neutron-TOF
- By construction, **insensitive to B-fields** (unlike PMTs), no need for mu-metal
- Low voltage supply (+30V bias, may even think of battery powered detectors for reducing noise loops)

C6D6/PMT B-field sensitivity: can we avoid it?

Aspect 3: mu-metal & magnetic fields screening

From conventional C6D6/PMT towards C6D6/SiPM: the proposal to develop a new C6D6

- \rightarrow Aspect 1: "dirty" signal response
- \rightarrow Aspect 2: neutron sensitivity (PMT)
- \rightarrow Aspect 3: B-field sensitivity (mu-metal)

Replace PMT+VD by SiPM

"Mock" prototype of IFIC-C6D6: i6D6

- 250 ml C6D6
- SiPM Sensl 50x50mm²
- 1/4th of L6D6 volumen (four of these make one L6D6)

\rightarrow Readout electronics design for fast SiPM summed output

- SiPM output capacitance is of 200 pF/channel (Fast Output) and 4nF/channel (STD Output).
- Direct sum is not reliable as it leads to a very high capacitance in the output and a very time extended output (slows down the output), additionally dark-current from non-firing pixels is added to the final signal, thus worsening the noise a lot.
- Need of a special impedance-matching network to keep initial time response of the fast SiPM output

- SiPM output capacitance is of 200 pF/channel (Fast Output) and 4nF/channel (STD Output).
- Direct sum is not reliable as it leads to a very high capacitance in the output and a very time extended output (slows down the output), additionally dark-current from non-firing pixels is added to the final signal, thus worsening the noise a lot.
- Need of a special impedance-matching network to keep initial time response of the fast SiPM output
- Solution: multiplexed Schottky-diode based readout network

- SiPM output capacitance is of 200 pF/channel (Fast Output) and 4nF/channel (STD Output).
- Direct sum is not reliable as it leads to a very high capacitance in the output and a very time extended output (slows down the output), additionally dark-current from non-firing pixels is added to the final signal, thus worsening the noise a lot.
- Need of a special impedance-matching network to keep initial time response of the fast SiPM output
- Solution: multiplexed Schottky-diode based readout network

- SiPM output capacitance is of 200 pF/channel (Fast Output) and 4nF/channel (STD Output).
- Direct sum is not reliable as it leads to a very high capacitance in the output and a very time extended output (slows down the output), additionally dark-current from non-firing pixels is added to the final signal, thus worsening the noise a lot.
- Need of a special impedance-matching network to keep initial time response of the fast SiPM output
- Solution: multiplexed Schottky-diode based readout network

- SiPM output capacitance is of 200 pF/channel (Fast Output) and 4nF/channel (STD Output).
- Direct sum is not reliable as it leads to a very high capacitance in the output and a very time extended output (slows down the output), additionally dark-current from non-firing pixels is added to the final signal, thus worsening the noise a lot.
- Need of a special impedance-matching network to keep initial time response of the fast SiPM output
- Solution: multiplexed Schottky-diode based readout network

- SiPM output capacitance is of 200 pF/channel (Fast Output) and 4nF/channel (STD Output).
- Direct sum is not reliable as it leads to a very high capacitance in the output and a very time extended output (slows down the output), additionally dark-current from non-firing pixels is added to the final signal, thus worsening the noise a lot.
- Need of a special impedance-matching network to keep initial time response of the fast SiPM output.

→ Encapsulation optimization for high-count rate capability

Reduced size of the sensitive (C6D6) volumen: 250 ml represents 1/4th of C-fiber C6D6+PMT detectors

1 L Volume

250 mL Volume

 \blacktriangleright Pixelation of the sensitive (C₆D₆) volume, helps? let's test it

C₆D₆ (BC535 equivalent)

PROPERTIES	0-315
Light Output (% Anthracene)	60
Scintillation Efficiency (photons/1 MeV e ⁻)	9.200
Wavelength of Maximum Emission (nm)	425
Decay Time, Short Component (ns)	3.5
Bulk Light Attenuation Length (m)	>3
Specific Gravity	0.954
Refractive Index	1.498
Hash Point (°C)	-11
Boiling Point ("C at 1 atm)	79

SiPM 4	
t Code	Microcell size (Total number per pixel)
Sensor Arrays	
60035-4P-BGA	35 um
60035-64P-PCB	(22,292 microcells)

C6D6/SiPM encapsulation design and optimization for high count rates

C6D6+SiPM / LaCl3+ SiPM proposal for TED technique

- Threshold correction depends strongly on the isotope and the detection threshold.
- Example: Pu-242(n,g): After normalization to Au→ threshold correction still 4-7% using 150-250 keV threshold

Large correction in some cases (!)

Proposal:

In parallel to the C6D6+SiPM commissioning.

➡

Measurement of reference capture spectra using LaCl3+SiPM together with the C6D6/SiPM detectors.

Spectroscopic information about the nuclei under study.

Improve the modeling of neutron capture cascades.

Further Improvement of threshold corrections for TED technique.

C6D6+SiPM development Workplan

	Task	Dates	tes					
	PCB Fast Sum	< 15 October IFIC						
	PCB Fast Sum test in Lab		15-30 October @ IFIC					
	1st test with C6D6 Bicron + SiPM			11-24 November'19@ CERN				
Leghard? Bicron?	ENCAPSULATION 4 fold C6D6-cell (customized)				Dec.19 – June.20 (?)			
	2nd test: C6D6+SiPM & n- sensitivity					July- Dec.'20@ CNA-Seville		
	3rd Test: (>LS2, during target #3 commissioning)						Jan- June'21 @ n_TOF	
	Nb-94 (n,g) Mo-95-98 (n,g) Proposals							Near future

• Nb-94(n,g):

- Sample available: Nb-93(n,g)Nb-94 @ ILL
 - 5 ultrahigh purity Nb samples, each 5-10 MBq ⁹⁴Nb, ≈30 MBq ⁹⁵Nb, ≈100 MBq ^{93m}Nb
- Radioactive isotope → **First measurement ever**
- Nugrid calculations on the XS impact to be performed

• Mo-95-98

- NPA-IX (A. Tattersall): Mo-96 s-process only (powerful tool)
- Models have problems in reproducing the 95Mo/96Mo ratio from pre-solar grains \rightarrow Increase of Mo-95(n,g) \sim 30%
- Main request from sensitivity study: re-measure Mo-94(n,g), Mo-95(n,g), Mo-96(n,g), Mo-97(n,g), Mo-98(n,g)

backup stuff

Uncertainties in s-process nucleosynthesis in low-mass stars determined from Monte Carlo variations

G. Cescutti,¹*[†] R. Hirschi,^{2,3}[†] N. Nishimura,⁴[†] J. W. den Hartogh,^{2,5}[†] T. Rauscher,^{6,7}[†] A. St. J. Murphy⁸[†] and S. Cristallo^{9,10}

¹INAF, Osservatorio Astronomico di Trieste, I-34131 Trieste, Italy
²Astrophysics group, Lennard-Jones Laboratories, Keele University, ST5 5BG Staffordshire, UK
³Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8583, Japan
⁴Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
⁵Konkoly Observatory, Konkoly Thege Miklós út 15-17, H-1121 Budapest, Hungary
⁶Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel, Switzerland
⁷Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK
⁸SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK
⁹INAF, Osservatorio Astronomico d'Abruzzo, I-64100 Teramo, Italy
¹⁰INFN-Sezione di Perugia, I-06123 Perugia, Italy

Table A1. The key reaction rates for the standard model. Key rates in levels 1-3 are shown, along with their correlation factors r_{cor0} , r_{cor1} , and r_{cor2} , respectively. Not all s-process nuclides analysed are listed but only those for which key rates were found. Also shown for each rate are the ground state contributions X_0 to the stellar rate of the (n, γ) reaction and uncertainty factors of the β -decay rate at two plasma temperatures, respectively.

Nuclide	r _{cor,0}	r _{cor,1}	r _{cor,2}	Key rate Level 1	Key rate Level 2	Key rate Level 3	<i>X</i> ₀ (8, 30 keV)	Weak rate uncertainty factor (8, 30 keV)
					/ •••			, 1.00
		0.14	0.67		64 Ni(n, γ) ⁶⁵ Ni	1.00	, 1.00
	⁹⁵ Mo	-0.85		95 Mo(n, γ	⁹⁶ Mo		1.00	, 1.00
		0.29	0.65		64 Ni(n, γ) ⁶⁵ Ni	1.00	, 1.00
	⁹⁶ Mo	-0.94		$^{96}Mo(n, \gamma)$	⁹⁷ Mo		1.00	, 1.00
	⁹⁷ Mo	-0.87		97 Mo(n, γ	⁹⁸ Mo		1.00	, 1.00
	⁹⁸ Mo	-0.94		⁹⁸ Mo(n, γ	⁽⁾⁹⁹ Mo		1.00	, 1.00

Aspect 1: neutron sensitivity

L6D6 Response to Neutrons (C. Guerrero & J.Lerendegui-Marco, US):

PMT : empty glass bottle surrounded by a thin Mumetal layer

Thus, avoiding PMT (thereby reducing also total amount of CF) should help to reduce NS further down(!)

Aspect 1: neutron sensitivity

L6D6 Response to Neutrons (C. Guerrero & J.Lerendegui-Marco, US):

Influence of Al/Carbon Fiber

SiPM vs. PMT in γ-ray detection

Example of energy spectra from Grodzicka et al. 2017 [Nuclear Inst. and Methods in Physics Research, A 874 (2017) 137–148]

J-Series High PDE and Timing Resolution, TSV Package DATASHEET

Sensor Size	Microcell Size	Paramotor	Overvoltage	Min.	Typical	Max.	Units
	20µm		10000		9.1x10*		
0	35µm		ADL + 510A		2.8x10*		
20µm	Gain	May . 6 (%)		1.7x10*			
	35µm	(anode-cathode)	10.70.07		5.3x10*		
General Contract	Quilla anno		Vbr + 2.5V		2.8x10*		
	oopum		Vbr + 5.0V		5.3x10*		
	20µm		Vbr + 2.5V		0.0	0.0	μA
General Contractor	35µm				412	00	
amm	20µm	Davids Chammers	March 6 Mil			10	μA
	35µm	Lienk Gument	VDX + 6.UV		1.1	1.6	
G	9.E		Vbr + 2.5V		0.9	1.3	μA
enm	oojam		Vbr + 6.0V		4.1	5.8	μA
3mm	20µm, 35µm	Rise time * -			100		pa
6mm	35µm	anode-cathode output			300		ps
	20µm				12		na
3 m m	35µm	Mcrocel recharge time			37		ns
Gmm	35µm	CONSIGN -			48		na
	20µm				TEO		pF
amm	35µm	Capacitance *	Vbr + 2.5V		1000		pF
8mm	35wm	(anode output)			4000		pF
_	20µm				TBD		pF
3mm	35µm	Capacitance *	Vbr + 2.5V		60		pF
Gmm	35µm	(fast terminal)			200		pF
	20µm				1.4		na
3mm	35µm	Fast output pulse width			1.4		na
6mm	35µm	(FWHM)			3.0		na
	20µm				6		96
	35µm	-	Vbr + 2.5V		7		%
3mm	20µm	-			10		%
	35wm	Crosstalk	Vbr + 5.0V		22		%
		-	Vbr + 2.6V		7		%
8mm	35µm		Vbr+5.0V		22		%
	20µm, 35µm		Vbr + 2.5V		0.1		%
3mm	20um 35um	-	Vbr + 6 OV		10		<u>.</u>
	збµт, збµт Збµт	Atterpuising	Vbr + 2.5V		0.1		
emm			Vbr + 5 OV		10		
Servero	20um 25um		The second se		1.04		
	Coperty Coperty	Imperature dependence of Vbr *			<21.5		mWPC

Sens

