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I-TED Commissioning

Proof-of-principle and a full performance
evaluation of a demonstrator for i- TED.

@EAR1 @EAR2
>°Fe sample 3Nb sample
e Disk e Disk
e 20 mm (9) « 20 mm (9)
0,84 mm 0,6 mMm
«2,1035¢g « 2,5028 g

* Thanks to ILL and especially to Ingolf Monch for the ultrapure >Nb sample.




s6Fe(n,y) with C6D6 @ EARL

Motivations: s6Fe(n,y) JANIS estimation

10°

It has an isolated
resonance at 1.15
keV. !

* Which was used at
NTOF to validate
the weighting
function technique
for CoD6.
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s6Fe(n,y) with C6D6 @ EARL

Motivations: 6Fe(n,y) JANIS estimation
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 |[ts neutron capture
cross-section 1S
three orders of !
magnitude less
than the elastic
one. Great for the ™
development of the -
technique
(Compton Imaging). " '&-
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s6Fe(n,y) with C6D6 @ EAR1

By the way...

* Being the seed of
the s-process, 56Fe
has been recently
found to be very
relevant for
nucleosynthesis in
LM-AGB stars.

Uncertainties in s-process nucleosynthesis in low-mass stars determined
from Monte Carlo variations
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ABSTRACT

The main s-process taking place in low-mass stars produces about half of the elements heavier
than iron. It is therefore very important to determine the importance and impact of muclear
physics uncertainties on this process. We have performed extensive nuclear reaction network
calculations using individual and temperature-dependent uncertainties for reactions involv-
ing elements heavier than iron, within a Monte Carlo framework. Using this technique, we
determined the uncertainty in the main s-process abundance predictions due to nuclear uncer-
tainties linked to weak interactions and neutron captures on elements heavier than iron. We
also identified the key nuclear reactions dominating these uncertainties. We found that f-decay
rate uncertainties affect only a few nuclides near s-process branchings, whereas most of the
uncertainty in the final abundances is cavsed by uncertainties in neutron-capture rates, either
directly producing or destroying the nuclide of interest. Combined total nuclear uncertainties
due to reactions on heavy elements are in general small (less than 50 percent). Three key
reactions, nevertheless, stand out because they significantly affect the uncertainties of a large
number of nuclides. These are *“Fe(n.y ), “Ni(n,p), and “*Ba(n,p). We discuss the prospect
of reducing uncertainties in the key reactions identified in this study with future experiments.

Key words: nuclear reactions, nucleosynthesis, abundances - stars: abundances - stars: AGB
and post-AGBE — stars: evolution —stars: low-mass.
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56Fe(n,y) with C6D6 @ EAR1
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s6Fe(n,y) with C6D6 @ EAR1

PRELIMINARY RESULTS
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s6Fe(n,y) with C6D6 @ EAR1

PRELIMINARY RESULTS
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s6Fe(n,y) with C6D6 @ EAR1

Background
subtracted

PRELIMINARY RESULTS
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s6Fe(n,y) with C6D6 @ EAR1

PRELIMINARY RESULTS
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93Nb(n,y) with C6D6 @ EAR2
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Motivations:

* Available ultra-
pure sample.

« Material very
Interesting for its
application in lens,
allows as well as
superconductor.

93Nb(n,y) with C6D6 @ EAR2




93NIb(n,y) with C6D6 @ EAR2

Motivations: 93Nb(n,y) JANIS estimation

g . — capture
- As iron, it has a § —elastic
neutron capture §¢

cross-section 1S
lower than the 0
elastic one, about
two orders  of
magnitude. 10"
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>Nb @ EAR2
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93Nb(n,y) with C6D6 @ EAR2

PRELIMINARY RESULTS
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93Nb(n,y) with C6D6 @ EAR2

PRELIMJNARY RESULTS
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93Nb(n,y) with C6D6 @ EAR2

PRELIMINARY RESULTS
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SFa & °3Nb measurements

SUMMARY

« With the objective of evaluating the performance of i-TED, we
have measured the 56Fe(n,g) and 93Nb(n,g) cross sections with
CoD6 detectors at n TOF EAR1 and EAR2.

« At this point, the statistics and quality of the C6D6 data looks
good as to determine the capture yield and cross sections.

* Ongoing work ...

> MC simulations to calculate Wfs and apply the PHWT.
> Determination of the capture yield.
> Evaluate the astrophysical interpretation.

> Compare these results versus the i-TED results in order to
evaluate the performance of i-TED.
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