

Status report

V. Babiano Suarez, L. Caballero Ontanaya, D. Calvo, C. Domingo-Pardo, I. Ladarescu, JL Tain (IFIC),

A. Casanovas, A. Tarifeño (UPC), C. Guerrero, J. Lerendegui (US),

the n_TOF local team (CERN)

and the n_TOF Collaboration

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 681740).

European Research Council

C. Domingo-Pardo

n_TOF Collaboration Meeting, CIEMAT 11-13 December 2017

Outline

- i-TED concept review
- Apparatus & methodology
- i-TED tests @ n_TOF in September' 2017 // Preamp tests Massimo & N. Patronis
- i-TED tests @ n_TOF in November' 2017 // Tests 16OChamber (Sebastian)
- Outlook and next steps

erc

European Research Council

C. Domingo-Pardo

n_TOF Collaboration Meeting, CIEMAT 11-13 December 2017

Nucl. Instr. Meth. A 760 (2014) P.Zugec et al.

Nucl. Instr. Meth. A 760 (2014) P.Zugec et al.

→ Reduce "extrinsic" neutron sensitivity background

G. Walter et al., Astron. Astrophys. 167, 186 (1986)

Nucl. Instr. Meth. A 825 (2016), CDP

Nucl. Instr. Meth. A 760 (2014) P.Zugec et al.

Nucl. Instr. Meth. A 825 (2016), CDP

i-TED implies developments:

\rightarrow SiPMs instead of PS-PMTs:

- → High E-Resolution with SiPM albeit large dead-space between pixels
- → Scalable system (very low efficiency → large solid angle → many channels) → Compact electronics → Question on spectroscopic/timing performance ?

i-TED implies developments:

 \rightarrow SiPMs instead of PS-PMTs:

\rightarrow High E-Resolution with SiPM albeit large dead-space between pixels

→ Scalable system (very low efficiency → large solid angle → many channels) → Compact electronics → Question on spectroscopic/timing performance ?

i-TED pre-requisites: high energy resolution+ good timing resolution

P.Olleros, Master Thesis, IFIC, 2017

i-TED implies developments:

→ SiPMs instead of PS-PMTs:

→Demonstrate High E-Resolution with SiPM albeit large dead-space between pixels

→ Scalable system (very low efficiency → large solid angle → many channels) → Compact electronics → Question on spectroscopic/timing performance ?

 \rightarrow area = 5x5 cm² = 25 cm²

i-TED: readout electronics (PETsys) Test Sept.2017

PETsys Electronics S.A.

- \rightarrow 128 channels (or pixels from SiPM)
- → 25 ps intrinsic t-resolution / 32 ps SiPM+ASIC/ 200 ps Crystal + SiPM + ASIC
- →max. rate 160 kEvents/ch or 12 Mevents/board
- \rightarrow energy via qdc for each channel

¹⁹⁷Au(n,γ) RUNS:

i-TED time-stamps:

 \rightarrow Difficult to identify the t_o of each bunch

¹⁹⁷Au(n,γ) RUNS:

i-TED time-stamps:

0

0.8 0.6 0.4 0.2 0 \rightarrow Difficult to identify the t_o of each bunch

Counts

 10^{4}

10³

 10^{-1}

¹⁹⁷Au(n,γ) RUNS:

i-TED time-stamps:

0.2

0 [

200

400

600

10

1200

10² En (eV)

 $\times 10^3$

1600

Counts

En Spectrum (ns) offset = 331500.0 (ms)

i-TED time-stamps:

4000 3500

3000

2500

2000

1500

1000 500

0.8

0.6

0.4

0.2

 \rightarrow Need an external trigger signal!!

i-TED: new readout electronics (November test)

PETsys

TTL-to-LVDS Converter:

→ PS-Trigger input into our dacq

Bottom

i-TED external trigger tested in the lab

TTL-to-LVDS Converter:

Pulse generator: n_TOF like trigger

i-TED (PETSYS) DACQ:

i-TED: new readout electronics (November test)

With n_TOF DACQ (signal displayer)

PCB Sum-board: only handles SLOW SiPM summed-outputs

PCB Sum-board:

With n_TOF DACQ (signal displayer)

With n_TOF DACQ

Run 107929 - Trigger 2423

- Response OK for TOF
- HE part probably affected by unoptimized PSA
- Effect of the crystal radioactivity (alphas) in the large crystal

With n_TOF DACQ

dsample = 8 cm dSA=30 mm SETUP 1

dsample = 5 cm dSA=15 mm SETUP 2

With i-TED (PETSYS) DACQ:

dsample = 8 cm dSA=30 mm SETUP 1

dSA=15 mm

dsample = 5 cm

SETUP 2

With i-TED (PETSYS) DACQ:

dsample = 8 cm dSA=30 mm SETUP 1

dSA=15 mm

dsample = 5 cm

SETUP 2

With i-TED (PETSYS) DACQ:

i-TED [S-detector] En Spectrum / All Files

dsample = 8 cm dSA=30 mm SETUP 1

dSA=15 mm

dsample = 5 cm

SETUP 2

With i-TED (PETSYS) DACQ:

i-TED [S-detector] En Spectrum / All Files

i-TED [A-detector] En Spectrum / All Files

dsample = 8 cm dSA=30 mm SETUP 1

dSA=15 mm

dsample = 5 cm

SETUP 2

With i-TED (PETSYS) DACQ:

i-TED [S-detector] En Spectrum / All Files

i-TED [A-detector] En Spectrum / All Files

10²

10

10³

10⁴

10⁵

10

10-1

1

	9 h run About 9k Bunches 4.7x10 ¹⁶ protons		
	S	Α	i-TED (S&A)
S/B Setup 1	57	11	57
S/B Setup 2	59	14	56
	S	Α	i-TED (S&A)
Rel Eff. (%) Setup 1	100%	64%	0.15%
Rel. Eff. (%) Setup 2	100%	70%	0.2%

• Main technical commissioning of i-TED, both in terms of detectors (crystals, SiPMs, etc), readout electronics (PETSYS mod. Version) and processing software has been

accomplished successfully.

• With the developed i-TED prototype, we have not found any major drawback in terms of performance, it seems also that with i-TED we can come much closer to the sample than in these tests (to enhance efficiency). To be tested.

i-TED: Summary & Outlook

- We have to complete the analysis, including:
 - C6D6 runs from september as a benchmark
 - Imaging in our i-TED runs of November

- For 2018 we are preparing the i-TED Demonstrator (i-TED2), which features 5 detectors (instead of 2), 1 detector for the S & 4 detectors for the A-detector.
- We need to perform a few additional technical detector-tests early 2018 and a dedicated performance commissioning in 2018 (more tomorrow).

THANKS FOR YOUR ATTENTION

Project HYMNS funded by the ERC under Grant Agreement Nr. 681740

Backup slides

Remaining technical i-TED tests / 2018 (with parasitic neutron beam/n_TOF detector test):

- Effect of sample-detector distance, how close we can come with i-TED (its Sdetector) to the sample → Efficiency / high En
- Possibility to use a veto time-gate to go higher in neutron energy, for the case that the detector is affected by the gamma-flash
- Combined capture & gamma-source measurement to develop sample-activity rejection algorithms
- Effect of the LiH moderator for reducing intrinsic neutron sensitivity
- i-TED response tests at EAR2
- Explore dynamic range of i-TED, how high we can go in g-ray energy
- Combined i-TED & TAC "matriuska-like" set-up, to enhance efficiency at high gamma-ray energy (see next slide).

i-TED + TAC (?):

→ Enhance efficiency for high-enery part of the capture cascade (Triple-coincidences S&A&TAC)

