⁸⁰Se(n,γ) measurement

and

Commissioning of the i-TED Demonstrator (i-TED2)

V. Babiano Suarez, L. Caballero Ontanaya, D. Calvo, C. Domingo-Pardo, I. Ladarescu, JL Tain (IFIC), A. Casanovas, A. Tarifeño (UPC), C. Guerrero, J. Lerendegui (US), C. Lederer-Woods (U.Edinburgh), R. Reifarth (U. Frankfurt), ...

the n_TOF local team (CERN)

and the n_TOF Collaboration

PROPOSAL TO BE SUBMITTED TO THE NEXT INTC-PAC, by January 10th, 2018

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 681740).

European Research Council

C. Domingo-Pardo

n_TOF Collaboration Meeting, CIEMAT 11-13 December 2017

Outline

- Motivation & Introduction: The branching around ⁷⁹Se(n,γ)
- Need for a new 80 Se(n, γ) measurement
- Need to develop high-selectivity (n,g) techniques: i-TED
- i-TED Commissioning
- Summary & Outlook

C. Domingo-Pardo

n_TOF Collaboration Meeting, CIEMAT 11-13 December 2017

European Research Council

Motivation and Introduction: MSs & Temperature evolution

Currents, rotation, mixing

Temperature: a key ingredient in stellar structure and evolution

N.Nishimura, et al. 2017 MNRAS

The massive-star nuclear-thermometer

17 m

⁹Se

The massive-star nuclear-thermometer

letters to nature

Nature 332, 700 - 702 (21 April 1988); doi:10.1038/332700a0

S-process krypton of variable isotopic composition in the Murchison meteorite

ULRICH OTT*, FRIEDRICH BEGEMANN*, JONGMANN YANG^{†‡} & SAMUEL EPSTEIN[†]

- → Objective of HYMNS-ERC Project (LoI, CERN INTC 2014)
 - → Improvements in the detection system: i-TED
 - \rightarrow Accurate (n,g) CSs of neighbouring nuclei

C. Domingo-Pardo

G. Walter et al., Astron. Astrophys. 167, 186 (1986)

- → Low energy cut-off at 3 keV
- → Limited En-resolution
- \rightarrow (Probably with strong n-sensitivity bias)

C. Domingo-Pardo

C. Domingo-Pardo

⁸⁰Se(n, γ) at n_TOF EAR1

C. Domingo-Pardo

Sample	Objective(s)	Protons	Area	Set-up
⁸⁰ Se	⁸⁰ Se(n,g) via C6D6 Benchmark i-TED2 performance	2·10 ¹⁸	EAR1	4xC ₆ D ₆ i-TED2
Dummy	Background for ⁸⁰ Se(n,g)	5.10 ¹⁷	EAR1	4xC ₆ D ₆ i-TED2
Au, Pb, C	Normalization ⁸⁰ Se(n,g), Beam-induced background in (n,g) Data to develop i-TED bkg. rejection algorithms.	1.10 ¹⁸	EAR1	4xC ₆ D ₆ i-TED2
Au,Pb,C	i-TED Detector response function.	5.10 ¹⁷	EAR2	i-TED2
⁸⁰ Se	S-wave at 2keV in ⁸⁰ Se, 1 g sample n-sensitivity (no i-TED)		EAR1	4xC ₆ D ₆
Total protons requested:		4.5x1018		

Need of new developments: illustrated @ $^{93}Zr(n,\gamma)$

PHYSICAL REVIEW C 87, 014622 (2013)

The 93 Zr (n, γ) reaction up to 8 keV neutron energy

G. Tagliente,^{1,*} P. M. Milazzo,² K. Fujii,² U. Abbondanno,² G. Aerts,³ H. Álvarez,⁴ F. Alvarez-Velarde,⁵ S. Andriamonje,³ J. Andrzejewski,⁶ L. Audouin,⁷ G. Badurek,⁸ P. Baumann,⁹ F. Bečvář,¹⁰ F. Belloni,² E. Berthoumieux,³ F. Calviño,¹¹
M. Calviani,¹² D. Cano-Ott,⁵ R. Captel,^{13,14} C. Carrapiço,¹⁵ P. Cennini,⁶ V. Chepel,¹⁷ E. Chiaveri,¹⁶ N. Colonna,¹ G. Cortes,¹¹
A. Couture,¹⁸ M. Dahlfors,¹⁶ S. David,⁹ I. Dillmann,^{7,19} C. Domingo-Pardo,^{20,19} W. Dridi,³ I. Duran,⁴ C. Eleftheriadis,²¹
M. Embid-Segura,⁵ A. Ferrari,¹⁶ R. Ferreira-Marques,¹⁷ W. Furman,²² I. Goncalves,¹⁵ E. Gonzalez-Romero,⁵ F. Gramegna,¹²
C. Guerrero,⁵ F. Gunsing,³ B. Haas,²³ R. Haight,²⁴ M. Heil,^{7,19} A. Herrera-Martinez,¹⁶ E. Jericha,⁸ F. Käppeler,⁷ Y. Kadi,¹⁶
D. Karadimos,²⁵ D. Karamanis,²⁵ M. Kerveno,⁹ E. Kossionides,²⁶ M. Krtička,¹⁰ C. Lamboudis,²¹ H. Leeb,⁸ A. Lindote,¹⁷
I. Lopes,¹⁷ S. Lukic,⁹ J. Marganiec,^{6,19} S. Marrone,¹ T. Martínez,⁵ C. Massimi,²⁷ P. Mastinu,¹² A. Mengoni,¹³ C. Moreau,²
M. Mosconi,^{7,28} F. Neves,¹⁷ H. Oberhummer,⁸ S. O'Brien,¹⁸ C. Papachristodoulou,²⁵ C. Papadopoulos,²⁹ C. Paradela,⁴
N. Patronis,²⁵ A. Pavlik,³⁰ P. Pavlopoulos,³¹ L. Perrot,³ M. T. Pigni,⁸ R. Plag,^{7,19} A. Plompen,³² A. Plukis,³ A. Poch,¹¹
J. Praena,¹² C. Pretel,¹¹ J. Quesada,¹⁴ R. Reifarth,^{24,19} M. Rosetti,³³ C. Rubbia,³⁴ G. Rudolf,⁹ P. Rullhusen,³² J. Salgado,¹⁵
C. Santos,¹⁵ L. Sarchiapone,¹⁶ I. Savvidis,²¹ C. Stephan,³³ J. L. Tain,²⁰ L. Tassan-Got,³⁵ L. Tavora,¹⁵ R. Terlizzi,¹ G. Vannini,²⁷
P. Vaz,¹⁵ A. Ventura,³³ D. Villamarin,⁵ M. C. Vincente,⁵ V. Vlachoudis,¹⁶ R. Vlastou,²⁹ F. Voss,⁷ S. Walter,⁷
M. Wiescher,¹⁸ and K. Wisshaf
(n TOF Collaboration¹)

- HERMES observations of Nb and Zr in S-type stars
- Determination of the s-process temperature directly in evolved low-mass GSs, using Zr and Nb abundances, independent of stellar evolution models.

• 93Zr/93Nb provides chronometric information on the time elapsed since the start of the s-process (one-three million years).

LETTER

The temperature and chronology of heavy-element synthesis in low-mass stars

P. Neyskens¹, S. Van Eck¹, A. Jorissen¹, S. Goriely¹, L. Siess¹ & B. Plez²

The present determination of the s-process temperature relies on a single assumption, namely that the equilibrium approximation is valid along the Zr isotopic chain, which is known to be true locally¹. For this reason, the uncertainties in the method are mainly those in the derived abundances and in the experimental Zr cross-section^{14,15}, that is, about 5% for the stable Zr isotopes and 11% for ⁹³Zr. Reducing the ⁹³Zr error would constrain the s-process operation temperature even more.

Adapted from P. Neyskens et al., Nature 517, 174-176 (2015)

The i-TED project

i-TED Commissioning: Motivation 79 Se(n, γ)

Radioactive sample

Small (n,g) vs. (n,n)

D. Schumann, S. Heinitz

C. Domingo-Pardo

n_TOF Collaboration Meeting, CERN, 22/4 December 2016

U. Koster

i-TED Commissioning: Motivation

Radioactive sample → Enhance selectivity via high Eg-resolution

Small (n,g) vs. (n,n)

Energy resolution (spectroscopy resol.) means higher selectivity

8 Energy(eV)

i-TED Commissioning: Motivation

Radioactive sample \rightarrow Enhance selectivity via high Eg-resolution Small (n,g) vs. (n,n) \rightarrow Enhance (n, γ) sensitivity via imaging techniques

i-TED: imaging-Total Energy Detector

i-TED: imaging-Total Energy Detector

Technical commissioning i-TED Prototype (OK)

i-TED Demonstrator (i-TED2)

Performance commissioning needed \rightarrow i-TED2

- Technical validation of the detectors
- Technical validation of readout electronics
- PS-Trigger signal correctly implemented
- Efficiency
 - Estimate from tech. Comm.
 - Enhancement due to improved detector design and larger A

Objectives for the i-TED Commissioning

- Proof-of-concept demonstration via a true / realistic (n,g) measurement (in the low energy range where CS is larger)
- Check for the long-term stability of the full i-TED2
- Evaluate the intrinsic neutron sensitivity of i-TED, via the C-sample measurement
- Explore the i-TED performance in EAR2

Sample	Objective(s)	Protons	Area	Set-up
⁸⁰ Se	⁸⁰ Se(n,g) via C6D6 Benchmark i-TED2 (n,g) performance	2.10 ¹⁸	EAR1	4xC ₆ D ₆ i-TED2
Dummy	Background for ⁸⁰ Se(n,g)	5.10 ¹⁷	EAR1	4xC ₆ D ₆ i-TED2
Au, Pb, C	Normalization ⁸⁰ Se(n,g), Beam-induced background in (n,g) Data to develop i-TED bkg. rejection algorithms.	1.10 ¹⁸	EAR1	4xC ₆ D ₆ i-TED2
Au,Pb,C	Detector response function.	5-10 ¹⁷	EAR2	i-TED2
⁸⁰ Se	S-wave at 2keV in ⁸⁰ Se, 1 g sample n-sensitivity		EAR1	4xC ₆ D ₆
Total protons requested:		4.5x1018		

Remaining technical i-TED tests / 2018 (with parasitic neutron beam/n_TOF detector test):

6-7 days of test-beam requested for:

- Effect of sample-detector distance, how close we can come with i-TED (its Sdetector) to the sample → Efficiency / high En
- Possibility to use a veto time-gate in our readout electronics to go higher in neutron energy, for the case that the detector is affected by the gamma-flash
- Combined **capture & gamma-source measurement** to develop sample-activity rejection algorithms
- Effect of the LiH moderator for reducing intrinsic neutron sensitivity
- i-TED response tests at EAR2