i-TED

Total Energy Detector with γ -imaging capability

L. Caballero Ontanaya, C. Domingo-Pardo, P. Gramage, I. Ladarescu, JL Tain (IFIC)

C. Guerrero (US)

and the n_TOF Collaboration

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 681740).

European Research Council

C. Domingo-Pardo

n_TOF Collaboration Meeting, CERN, 22/4 December 2016

Outline

- The concept of i-TED
- i-TED planning
- Ongoing developments on i-TED instrumentation
- Outlook & Conclusions

n_TOF Collaboration Meeting, CERN, 22/4 December 2016

→ Reduce "extrinsic" neutron sensitivity background

→ Reduce "extrinsic" neutron sensitivity background

GEANT4 simulation of the neutron background of the $C_6 D_6$ set-up for capture studies at n_TOF

→ Reduce "extrinsic" neutron sensitivity background

GEANT4 simulation of the neutron background of the $C_6 D_6$ set-up for capture studies at n_TOF

→ Reduce "extrinsic" neutron sensitivity background

GEANT4 simulation of the neutron background of the C_6D_6 set-up for capture studies at n_TOF

i-TED: A novel concept for high-sensitivity (n,γ) cross-section measurements

How to get it?

How to get it?

Macklin & Gibbons, ÖRNL, 1967

First tests of the applicability of γ -ray imaging for background discrimination in time-of-flight neutron capture measurements

D.L. Pérez Magán^a, L. Caballero^a, C. Domingo-Pardo^{a,e}, J. Agramunt-Ros^a, F. Albiol^a, A. Casanovas^b, A. González^c, C. Guerrero^d, J. Lerendegui-Marco^d, A. Tarifeño-Saldivia^{a,b}

i-TED: imaging-Total Energy Detector

HYMNS: High sensitivitY Measurements of key stellar Nucleo-Synthesis reactions i-TED time plan:

HYMNS Work Plan, Resources and WP-Distribution

WP	Task distribution
1 Design	P1: MC S1: Analysis Software + CDP
2 DAQ	E1 + P1 + P2+ CDP
3 S-PSD	P1 + (S1) + CDP
4 A-PSD	P1 + (S1) + CDP
5 Foc. i-TED	S1 + P1 + CDP
6 Proof of Prin.	S1 + P1 + P2+ CDP
7 79Se Sample	P1 + CDP
8 4p i-TED	P1 + S1+ CDP
9 Exp.Val.	P2 + S2+ CDP
10 ⁷⁹ Se(n,g)	S2 + P2+ CDP
11 Analysis	S2: Data+ P2: Astro. + CDP
	Resources (time/human)
	Tasks & Sub-tasks
_	Milestones
	Constraints

Neutron capture measurements require:

- \rightarrow Low intrinsic neutron sensitivity
- \rightarrow Fast timing

Neutron capture measurements require:

- \rightarrow Low intrinsic neutron sensitivity
- → Fast timing

Electronic collimation requires (y-Imaging):

- \rightarrow Good energy resolution (4-6%) \rightarrow High photon yield inorganic crystals
- \rightarrow Good position resolution (1-2 mm) \rightarrow Pixellated PMT or SiPMs

Neutron capture measurements require:

- \rightarrow Low intrinsic neutron sensitivity
- → Fast timing

Electronic collimation requires (y-Imaging):

- \rightarrow Good energy resolution (4-6%) \rightarrow High photon yield inorganic crystals
- \rightarrow Good position resolution (1-2 mm) \rightarrow Pixellated PMT or SiPMs

Neutron capture measurements require:

- \rightarrow Low intrinsic neutron sensitivity
- → Fast timing

Electronic collimation requires (y-Imaging):

- \rightarrow Good energy resolution (4-6%) \rightarrow High photon yield inorganic crystals
- \rightarrow Good position resolution (1-2 mm) \rightarrow Pixellated PMT or SiPMs

Energy resolution / LaCl₃(Ce) tests at IFIC:

→Tested large (5x5cm2) monolithic crystals of several thicknesses: 10 mm / 20 mm / 30 mm

→To test neutron sensitivity at CERN n_TOF (2017) / parasitic with any other commissioning

i-TED: energy resolution

Neutron capture measurements require:

- \rightarrow Low intrinsic neutron sensitivity
- → Fast timing

Electronic collimation requires (γ-Imaging):

- \rightarrow Good energy resolution (4-6%) \rightarrow High photon yield inorganic crystals
- \rightarrow Good position resolution (1-2 mm) \rightarrow Pixellated PMT or SiPMs

Energy resolution / LaCl₃(Ce) tests at IFIC:

→Tested large (5x5cm2) monolithic crystals of several thicknesses: 10 mm / 20 mm / 30 mm

→To test neutron sensitivity at CERN n_TOF (2017) / parasitic with any other commissioning

i-TED: photosensors validation

Electronic collimation requires:

- \rightarrow Good energy resolution (4-6%) \rightarrow High photon yield inorganic crystals
- → Good position resolution (1-2 mm) → Pixellated PMT or SiPMs

- → 1 SiPM (Hamamatsu)
- \rightarrow # pixels= 16x16y = 256 ch
- \rightarrow pixel size = **3x3 mm**²
- \rightarrow area = 5x5 cm² = 25 cm²
- \rightarrow 4 x SiPMs (Hamamatsu)
- \rightarrow # pixels/SiPM= 8x8y = 64 ch
- \rightarrow pixel size = **3x3 mm**²
- \rightarrow area = 2.5x2.5 cm² = 6.2 cm²
- \rightarrow 1 SiPM (senseL)
- \rightarrow # pixels= 8x8y = 64 ch
- \rightarrow pixel size = 6x6 mm²
- \rightarrow area = 5x5 cm² = 25 cm²

i-TED: pixellation and complexity/scalability

i-TED: pixellation and complexity/scalability

 \rightarrow # pixels= 16x16y = 256 ch

- \rightarrow pixel size = **3x3 mm**²
- \rightarrow area = 5x5 cm² = 25 cm²

 \rightarrow # pixels= 8x8y = 64 ch

- \rightarrow pixel size = **6x6 mm**²
- \rightarrow area = 5x5 cm² = 25 cm²

Pixel size makes a difference ... in complexity!

But probably low impact in position resolution

(32 TACs)

i-TED: pixellation & spatial resolution

- → # pixels= 16x16y = 256 ch
- \rightarrow pixel size = **3x3 mm**²
- \rightarrow area = 5x5 cm² = 25 cm²

- \rightarrow # pixels= 8x8y = 64 ch
- \rightarrow pixel size = **6x6 mm**²
- \rightarrow area = 5x5 cm² = 25 cm²

Most proably 6mm pixels are OK !

Pixel size makes a difference ... in complexity! But probably low impact in position resolution

i-TED: detector finishing

→First i-TED prototype (ready!)

PLA (C₃H₃O₂) ρ_{PLA} =1.2 < ρ_{Cfiber} = 1.5-1.6 g/cm³

Scatter PSD

Absorber PSD

Presently testing frontend readout and processing electronics from PETsys Electronics

i-TED: readout electronics (PETsys)

- →128 channels (or pixels from SiPM)
- → 25 ps intrinsic t-resolution / 32 ps SiPM+ASIC/ 100 ps Crystal + SiPM + ASIC
- \rightarrow low threhold for timing /high threshold event def.
- → max. rate 160 kEvents/ch or 12 Mevents/board

 \rightarrow energy via tot-technique... not accurate enough (to be improved in a forthcoming version of this ASIC)

FPGA

i-TED: readout electronics (PETsys)

• Spatial and time response seem ok, reasonable (still being tested in detail)

• Drawback: Still poor spectroscopic performance, to be improved with the new version of the ASIC

i-TED: readout electronics (PETsys)

• Spatial and time response seem ok, reasonable (still being tested in detail)

• Drawback: Still poor spectroscopic performance, to be improved with the new version of the ASIC

i-TED: Summary & Outlook

- Presently developing i-TED demonstrator based on one 2-PSD module
- LaCl₃(Ce) crystals validated regarding energy resolution
- Tests ongoing for E-resolution using SiPM arrays
- Tests ongoing to determine spatial resolution using SiPM arrays of different pixelation and different manufacturers (sensL, Hamamatsu)
- Main front open: readout- control- and pre-processing electronics (PETsys)
- In parallel (not presented):
 - MC Simulations of the full array including neutron propagation (Geant4)
 - Working together with PSI and ILL on the production of ⁷⁹Se sample for the ⁷⁹Se(n,g) measurement at n_TOF.

Backup slides

Intrinsic neutron sensitivity: i-TED with ⁶LiH absorber pads

 \rightarrow extrinsic neutron sensitivity:

 \rightarrow intrinsic neutron sensitivity:

Focusable i-TED module

Angular resolution vs. distance between detectors

J-Series High PDE and Timing Resolution, TSV Package DATASHEET

sens

Fast Output Pulse Shape MicroFJ-60035-TSV

Standard Output Pulse Shape MicroFJ-60035-TSV

plitude (V)

Ę

High performance TOFPET2 ASIC

T: + 351 96 600 288

•

•

PETsys

Layout of the TOFPET2 ASIC.

Detail of test board showing the TOF-PET2 ASIC bonded on the board.

Designed in standard CMOS 110 nm technology

- Signal amplification and discrimination for each of 64 independent channels.
- Dual branch quad-buffered analogue interpolation TDCs for each channel. The first branch is used for timing measurement. The second branch can either be used for time-over-threshold (ToT) or charge measurement (ADC).
- Quad-buffered charge integration for each TDC or ADC in each channel.
- Dynamic range: 1500 pC.
 - SNR 25 dB for Q_{in} = 200 fC (\approx 1 p. e.) and input capacitance of 320 pF.
 - TDC time binning: 40 ps (option 20 ps).
- Gain adjustment per channel: 1, 1/2, 1/4, 1/8.
 - Supports positive or negative signal polarity
 - On-chip calibration pulse generator with 6-bit programmable amplitude.
 - Max channel hit rate: 600 kHz.
- Rejects dark counts without triggering, allowing to handle over 1 MHz of dark counts.
- Separately configurable timing and trigger thresholds for each channel.
- Configurable charge integration time up to one microsecond.
- Fully digital output, 4 LVDS data links double data rate (DDR) compatible.
- Max output data rate: 3.2 Gb/s.
- Operation frequency: 200 MHz.
 - Power consumption per channel: 5-8 mW, depending on certain settings.